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Abstract

We describe how to test the null hypothesis that errors from two para-

metrically specified regression models have the same distribution versus

a general alternative. First we obtain the asymptotic properties of test-

statistics derived from the difference between the two residual-based empir-

ical distribution functions. Under the null distribution they are not asymp-

totically distribution free and, hence, a consistent bootstrap procedure is

proposed to compute critical values. As an alternative, we describe how to

perform the test with statistics based on martingale-transformed empirical

processes, which are asymptotically distribution free. Some Monte Carlo

experiments are performed to compare the behaviour of all statistics with

moderate sample sizes.
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1 Introduction

Consider two regression models, specified as

Yji = µj(Xji, θj) + σj(Xji, θj)εji, j = 1, 2, i = 1, ..., nj, (1)

where {(Yji,X
0
ji)
0}nji=1 are independent and identically distributed (i.i.d.) observa-

tions, µj : Rpj×Rkj → R, σj : Rpj×Rkj → R are known functions, θj ∈ Θj ⊂ Rkj

are unknown parameter vectors, and the errors {εji}nji=1 are such that E(εji |

Xji) = E(εji) = 0, E(ε2ji | Xji) = E(ε2ji) = 1. Assuming independence between

the two samples, the objective of this paper is to propose statistics to test

H0 : F1(·) = F2(·) versus H1 : F1(·) 6= F2(·),

where Fj(·) is the distribution function of εji, which is assumed to be continuous,

but unspecified.

If regression errors were observable, the problem that we consider here would

be the classical two-sample problem. In fact, our test can be thought of as an

extension of the two-sample problem. Suppose that the distribution functions of

two observable variables Y1i and Y2i are compared using a classical nonparametric

test, such as the Kolmogorov-Smirnov test. One of the drawbacks of nonparamet-

ric tests in this context is that when the null hypothesis is rejected the statistic

gives no intuition about the cause of the rejection. To explore why the null has

been rejected, it would be of interest to test whether the distribution functions of

Y1i and Y2i differ only by a shift in location, with or without regressors; this test is

not a specific case of our problem, but it can be treated in an entirely similar way

with obvious changes. If the null hypothesis were rejected again, one might be

interested in going one step further and testing whether the distribution functions

of Y1i and Y2i are the same except for differences in mean and variance, which

might depend on regressors -and this is precisely the problem that we consider.

Thus, the testing procedures that we describe here can be used as a tool to explore
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whether the reason why the null hypothesis is rejected in a two-sample problem

is the presence of significant differences in the first or second order moments.

The testing problem that we study in this paper also arises directly in many

contexts in applied work. In Economics, for example, the productivity of a firm is

defined as the error from a regression model, and the researcher is often interested

in comparing the distribution functions of productivity of firms from two different

groups. In applied medical studies, the researcher is sometimes interested in

comparing the distribution functions of certain standardized variables with data

from healthy and unhealthy individuals. In many other areas it is often of interest

to test whether two observable variables belong to the same location-scale family,

which is also a specific case of the test that we study. In all these situations, the

usual approach to test for the equality of the distribution functions is to test for

the equality of just some moments (third, fourth and so on) or, with a parametric

approach, to propose parametric models for the errors and then test whether

the parameters estimated are equal. Instead, we propose to compare the entire

distribution functions without assuming any parametric form for them.

The test statistics that we consider here are based on the comparison be-

tween estimates of the distribution functions Fj(·). If errors were observable, we

could use the well-known Kolmogorov-Smirnov statistic Kn1,n2 := [(n1n2/(n1 +

n2)]
1/2 supx∈R |F1n1(x)− F2n2(x)|, where Fjnj(·) denotes the empirical distribution

function based on {εji}nji=1. Another popular alternative would be the Cramér-von

Mises statistic Cn1,n2 := [(n1n2/(n1+ n2)
2][
P2

j=1

Pnj
i=1{F1n1(εji)−F2n2(εji)}2]. If

H0 is true and the distribution function Fj(·) is continuous, these statistics are

distribution-free and their asymptotic behavior is known; hence any of them could

be used to perform a consistent test (for details, see e.g. Shorack andWellner 1986,

Section 9.9). In our context, we do not observe ε1i and ε2i, but we assume that
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well-behaved estimates bθ1, bθ2 are available, and hence we can construct residuals
bεji = {Yji − µj(Xji,bθj)}/σj(Xji,bθj), j = 1, 2, i = 1, ..., nj,

and the residual-based test statistics

bKn1,n2 :=

µ
n1n2

n1 + n2

¶1/2
sup
x∈R

¯̄̄ bF1n1(x)− bF2n2(x)¯̄̄ ,
bCn1,n2 :=

n1n2
(n1 + n2)2

2X
j=1

njX
i=1

{ bF1n1(bεji)− bF2n2(bεji)}2,
where bFjnj(·) denotes the empirical distribution function based on {bεji}nji=1. These
are the test statistics that we first study in this paper.

Many papers have studied the consequences of replacing errors by residuals in

test statistics based on empirical distribution functions. In a one-sample context,

Pierce and Kopecky (1979), Loynes (1980), Bai (1994) and Koul (1996), among

others, have derived the asymptotic distribution of residual-based goodness-of-

fit statistics. In a two-sample context, Koul and Sen (1985) consider a problem

similar to ours, but they assume linearity for µj(·, ·) and no scale estimation. In

their framework, they prove that if the mean of the regressors is zero then the

Kolmogorov-Smirnov statistic is asymptotically distribution-free; but this prop-

erty does not hold if the mean of the regressors is not zero, or if a scale function

is estimated. Koul (1996) considers the problem of testing whether the distribu-

tion functions of errors before and after a known change point are the same, and

proved that the Kolmogorov-Smirnov statistic is then asymptotically distribution-

free. But there is a crucial difference between our problem and the change point

problem: in our context, it is natural to assume that the estimators bθ1 and bθ2 are
independent, whereas in the change point problem all n1 + n2 residuals are con-

structed with the same estimator. Bai and Ng (2001) propose a statistic to test for

symmetry of regression errors which compares the empirical distribution functions

of positive and negative residuals in the same fashion as we do. In their setup,
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the two samples are not independent, which again makes their problem different

from ours. In the related problem of testing for independence between errors from

two independent regression models, Delgado and Mora (2000) prove that residual-

based statistics have the same asymptotic distribution as those based on errors.

However, this property does not hold here. As we prove below, in the two-sample

problem that we consider the residual-based statistics bKn1,n2 and bCn1,n2 do not

have the same asymptotic behavior as the ones based on errors Kn1,n2 and Cn1,n2.

Moreover, bKn1,n2 and bCn1,n2 are not distribution-free, even asymptotically; hence,

it is not possible to derive asymptotic critical values valid for any situation. To

overcome this problem, two different approaches can be followed: approximating

critical values by bootstrap methods, or using statistics based on transformed

empirical processes.

The usefulness of bootstrap methods in nonparametric distance tests was first

highlighted by Romano (1988). Applications of bootstrap methods similar to

the one we consider here have been proposed by Stute, González-Manteiga and

Presedo-Quindimil (1998) and González-Manteiga and Delgado (2001), among

many others. Recently, Neumeyer, Nagel and Dette (2005a, 2005b) have consid-

ered a symmetric wild bootstrap and a parametric bootstrap procedure in the

context of goodness-of-fit tests for error distribution in linear models. In this

paper we follow the same approach as in Koul and Lahiri (1994), and propose

a bootstrap resampling scheme based on a nonparametric kernel estimate of the

error distribution function. However, in contrast to Koul and Lahiri (1994), our

regression models are not assumed to be linear, which gives rise to higher technical

complexity in the proof of consistency.

Khmaladze (1981, 1993) proposed an alternative way to circumvent the prob-

lems that replacing errors by residuals causes when using statistics based on em-

pirical processes. Under weak assumptions, he proved that certain martingale

transforms of residual empirical processes converge weakly to Brownian motions
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and, hence, test statistics based on them are asymptotically distribution-free,

and approximate critical values can be obtained without bootstrap or simulation

methods. These results have been fruitfully exploited in nonparametric specifi-

cation tests, see e.g. Koul and Stute (1999), Bai and Ng (2001), Stute and Zhu

(2002), Bai (2003) and Khmaladze and Koul (2004). In this paper we discuss how

martingale-transformed processes can be used in our context to derive asymptot-

ically distribution-free test statistics.

The rest of this paper is organized as follows. In Section 2 we derive the asymp-

totic properties of bKn1,n2 or bCn1,n2 , propose a bootstrap procedure to approximate

their distribution and prove that this bootstrap procedure is consistent. In Sec-

tion 3 we consider statistics based on martingale transforms of the residual-based

empirical processes and derive their asymptotic properties. In Section 4 we report

the results of two Monte Carlo experiments that illustrate the performance of the

statistics with moderate sample sizes. Some concluding remarks are provided in

Section 5. All proofs are relegated to Section 6.

2 Statistics based on residual empirical processes

The asymptotic behavior of bKn1,n2 and bCn1,n2 can be derived by studying the weak

convergence of the residual empirical process on which they are based. To analyze

this process, the following assumptions are required.

Assumption 1: Both distribution functions Fj(·) have density functions fj(·)

which are continuously differentiable and strictly positive. Additionally,

supx∈R |xfj(x)| <∞, supx∈R
¯̄̄
x2ḟj(x)

¯̄̄
<∞, where ḟj(·) denotes the deriva-

tive of fj(·), and E{(1 + ε2ji)ḟj(εji)
2/fj(εji)

2} <∞.

Assumption 2: Both µj(·, ·) and σj(·, ·) have continuous derivatives with respect

to the second argument µ̇j(·, ·) and σ̇j(·, ·), and all these functions are Lip-
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schitz continuous with respect to the second argument, i.e., there exist a

function M1j(·) and a positive value α1j such that
¯̄
µj(x, u)− µj(x, v)

¯̄
≤

M1j(x) ku− vkα1j , and σj(·, ·), µ̇j(·, ·), σ̇j(·, ·) satisfy similar inequalities for

certain functionsM2j(·), M3j(·), M4j(·) and positive values α2j, α3j, α4j, re-

spectively. Additionally, σj(·, u) > Sj > 0 for all u in a neighborhood of θj,

E{k µ̇j(Xji, θj) k2} <∞, E{k σ̇j(Xji, θj) k2} <∞ and E{Mlj(Xji)
2} <∞,

for l = 1, ..., 4.

Assumption 3: There exist functions ψj(·, ·, ·) such that the estimators bθj sat-
isfy that n1/2j (bθj − θj) = n

−1/2
j

Pnj
i=1 ψj(Xji, εji, θj) + op(1). Additionally,

E{ψj(Xji, εji, θj) | Xji} = 0 and E{k ψj(Xji, εji, θj) k2} <∞.

Assumption 1 is a technical condition for studying residual empirical processes

using mean-value arguments. Observe that this assumption implies that both fj(·)

and ḟj(·) are bounded. The differentiability condition required in assumption 2

is relatively standard in nonlinear estimations, whereas the Lipschitz-continuity

condition allows us to handle the supremum conditions which typically appear

in the literature on residual empirical processes. Assumption 3 ensures that the

estimators are root-n-consistent and allows us to derive the covariances of the

limit process. The moment conditions introduced in assumptions 2 and 3 ensure

that the expectations which appear below are finite.

To derive the asymptotic behavior of our test statistics, first we present a

proposition that establishes an “oscillation-like” result between error-based em-

pirical processes and residual-based ones in our context. For t ∈ [0, 1], define

Vjnj(t) := n
−1/2
j

njX
i=1

[I{εji ≤ F−1j (t)}− t],

where I{·} is the indicator function, and define bVjnj(t) in the same way as Vjnj(t)
but replacing εji by bεji.
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Proposition 1: If (1) and assumptions 1-3 hold, then

sup
t∈[0,1]

¯̄̄ bVjnj(t)− {Vjnj(t) + gj(t)
0ξjnj}

¯̄̄
= op(1), (2)

where gj(t) := fj{F−1j (t)}(1, F−1j (t))0, ξjnj := n
−1/2
j

Pnj
l=1 ω

0
jψj(Xjl, εjl, θj)

and ωj := (E{µ̇j(Xji, θj)/σj(Xji, θj)}, E{σ̇j(Xji, θj)/σj(Xji, θj)}).

Theorem 1: If (1) and assumptions 1-3 hold, and n2 = λn1 for a fixed λ, then:

a) Under H 0,

bKn1,n2
d→ sup

t∈[0,1]

¯̄
D(1)(t)

¯̄
and bCn1,n2

d→
Z 1

0

{D(1)(t)}2dt,

where D(1)(·) is a Gaussian process on [0, 1] with E{D(1)(t)} = 0,

Cov{D(1)(s),D(1)(t)} = min(s, t)− st+

{λ/(λ+ 1)}Λ1(s, t, θ1) + {1/(λ+ 1)}Λ2(s, t, θ2),

and Λj(s, t, θj) := gj(s)
0ω0jE[I{εji ≤ F−1j (t)}ψj(Xji, εji, θj)]+gj(t)

0ω0jE[I{εji
≤ F−1j (s)}ψj(Xji, εji, θj)]+gj(s)

0ω0jE{ψj(Xji, εji, θj)ψj(Xji, εji, θj)
0}ωjgj(t).

b) Under H 1, for all x ∈ R,

P ( bKn1,n2 > x)→ 1 and P ( bCn1,n2 > x)→ 1.

If the distributions of supt∈[0,1]
¯̄
D(1)(t)

¯̄
(or

R 1
0
{D(1)(t)}2dt) were known, ac-

cording to this theorem bKn1,n2 (or bCn1,n2) could be used as a statistic to perform

a consistent test. Unfortunately, the covariance structure of D(1)(·) depends, in

general, on the unspecified distribution function Fj(·), the unknown parameters

θj and other expectations. Hence, it is not possible to obtain asymptotic critical

values valid for any situation. For this reason, we propose to approximate critical

values with a resampling procedure.

In our context, at first sight one might think that a correct bootstrap p-value

could be obtained by simply drawing i.i.d. bootstrap samples from the empirical
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distribution function based on the centered residuals. However, this is not the

case because, as Koul and Lahiri (1994) point out, the asymptotic distribution

of the statistics depends crucially on the assumption of continuity, and hence the

bootstrap samples must be generated from a continuous distribution. Accordingly,

based on the sample Yn1,n2 = {(Yji, X 0
ji) | i = 1, . . . , nj, j = 1, 2}, let efn1,n2(·) be

a kernel density estimate computed with the centered residuals, i.e.

efn1,n2(x) = 1

(n1 + n2)hn1,n2

2X
j=1

njX
i=1

ϕ{x− (bεji − ε)

hn1,n2
},

where ϕ(·) is a kernel density function, hn1,n2 is a smoothing value and ε :=

(
P2

j=1

Pnj
i=1bεji)/(n1 + n2). Let eFn1,n2(·) denote the corresponding distribution

function. It is then possible to generate i.i.d. random variables {U∗ji}
nj
i=1 with

uniform distribution on [0, 1] and define bootstrap errors ε∗ji := eF−1n1,n2
(U∗ji) for i =

1, ..., nj. Conditionally on the sample Yn1,n2 the random variables {ε∗ji}
nj
i=1 are i.i.d.

from a distribution with density efn1,n2(·). Now define the bootstrap observations
Y ∗ji := µj(Xji,bθj) + σj(Xji,bθj)ε∗ji, i = 1, ..., nj,

let bθ∗j be the bootstrap estimate of θj computed with {(Y ∗ji, X 0
ji)
0}nji=1 and consider

bε∗ji := {Y ∗ji − µj(Xji,bθ∗j)}/σj(Xji,bθ∗j), i = 1, ..., nj.

Finally, we can define the bootstrap test statistics

bK∗
n1,n2 :=

µ
n1n2

n1 + n2

¶1/2
sup
x∈R

¯̄̄ bF ∗1n1(x)− bF ∗2n2(x)¯̄̄ ,
bC∗n1,n2 := n1n2

(n1 + n2)2

2X
j=1

njX
i=1

{ bF ∗1n1(bεji)− bF ∗2n2(bεji)}2,
where bF ∗jnj(·) denotes the empirical distribution function based on {bε∗ji}nji=1. With
these statistics, the bootstrap procedure that we propose to use to perform the

test works as follows: based on the sample Yn1,n2 , generate bootstrap data and

compute the bootstrap statistic bT ∗n1,n2, (where T = K or C); repeat this process

9



B times and then reject H0 with significance level α if bTn1,n2 > T ∗α, where T ∗α

is the 1 − α sample quantile from {bT ∗n1,n2,b}Bb=1. To prove the consistency of this
bootstrap procedure, the following additional assumptions are required.

Assumption 4: The kernel function ϕ(·) is a positive, symmetric and twice

continuously differentiable probability density, such that
R
xϕ(x)dx = 0,R

x4ϕ(x)dx <∞ and supx∈R ϕ̇(x)
2/ϕ(x) <∞.

Assumption 5: The smoothing value is such that hn1,n2 + (n1 + n2)
−ah−1n1,n2 =

o(1), for some a ∈ (0, 1/4).

Assumption 6: The bootstrap estimators bθ∗j are such that, for every > 0,

P{
°°°n1/2j (bθ∗j − bθj)− n

−1/2
j

Pnj
i=1 ψj(Xji, ε

∗
ji,
bθj)°°° > | Yn1,n2} = op(1). Addi-

tionally, E[ψj(Xji, ε
∗
ji,
bθj) | Yn1,n2] = 0, ψj(·, ·, ·) is continuous with respect

to the third argument and E{k ψj(Xji, εji, u) k2} is uniformly bounded for

u in a neighborhood of θj.

Assumptions 4 and 5 ensure uniform convergence of efn1,n2(·) in probability
to the mixture density fM(·) := {λ/(λ + 1)}f1(·) + {1/(λ + 1)}f2(·), whereas

Assumption 6 guarantees that the bootstrap estimator behaves properly (see Koul

and Lahiri, 1994). In analogy to the original processes, define the bootstrap

processes on [0, 1]

V ∗jnj(t) := n
−1/2
j

njX
i=1

[I{ε∗ji ≤ eF−1n1,n2(t)}− t]

and bV ∗jnj(t) in the same way as V ∗jnj(t) but replacing ε∗ji by bε∗ji. Before proving the
consistency of the bootstrap procedure in our problem, we prove two properties

about the relationship between bootstrap empirical processes and residual-based

ones. Hereafter, FXj(·) denotes the distribution function of Xji.

Proposition 2: If (1) and assumptions 1-6 are satisfied then, for all > 0,

P ( sup
t∈[0,1]

¯̄̄ bV ∗jnj(t)− {V ∗jnj(t) + eV ∗jnj(t)}¯̄̄ > | Yn1,n2) = op(1),

10



where eV ∗jnj(t) := n
−1/2
j

Pnj
i=1(

eFn1,n2{[ eF−1n1,n2
(t)σj(Xji,bθ∗j)+µj(Xji,bθ∗j)−µj(Xji,bθj)]/σj(Xji,bθj)}− t).

Proposition 3: If (1) and assumptions 1-6 are satisfied then, for all > 0,

P ( sup
t∈[0,1]

¯̄̄ bV ∗jnj(t)− {V ∗jnj(t) + egj(t)0bξ∗jnj}¯̄̄ > | Yn1,n2) = op(1),

where egj(t) := efn1,n2{ eF−1n1,n2
(t)}(1, eF−1n1,n2

(t))0, bξ∗jnj := n
−1/2
j

Pnj
l=1 ω

∗0
j ψj(Xjl,

ε∗jl,
bθj) and ω∗j := (R µ̇j(x,bθj)/σj(x,bθj)dFXj(x),

R
σ̇j(x,bθj)/σj(x,bθj)dFXj(x)).

Theorem 2: If (1) and assumptions 1-6 hold, and n2 = λn1 for a fixed λ then,

for all x ∈ R,

P ( bK∗
n1n2
≤ x | Yn1,n2) −→ P ( sup

t∈[0,1]
|D(2)(t)| ≤ x) and

P ( bC∗n1,n2 ≤ x | Yn1,n2) −→ P (

Z 1

0

{D(2)(t)}2dt ≤ x),

in probability, where D(2)(·) is a Gaussian process on [0, 1] with E{D(2)(t)} =

0 and with the same covariances as D(1)(·), but replacing Fj(·) by the mix-

ture distribution function FM(·) := {1/(1+λ)}F1(·)+{λ/(1+λ)}F2(·), and

εji by a random variable εi with distribution function FM(·).

Observe that, under H0, D(2)(·) has the same distribution as D(1)(·); thus, the

bootstrap critical values correctly approximate the asymptotic ones. Under H1,

the bootstrap critical values converge to a fixed value; hence, the test performed

with the bootstrap critical values is consistent.

3 Statistics based on martingale transforms of

residual empirical processes

As Khmaladze (1981) points out in a seminal paper, the theoretical problems

which stem from the replacement of errors by residuals in goodness-of-fit tests can
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be circumvented using martingale transformation methods. Specifically, Khmal-

adze (1981) considers the problem of testing the null hypothesis “the distribution

function of the error terms {εji}nji=1 is F0(·)”, where F0(·) is a known distribution

function. He proves that if the standard residual-based empirical process has an

asymptotic representation such as (2), then it is possible, by means of a martin-

gale transformation, to derive a residual-based process that converges weakly to

a standard Brownian motion on [0, 1]. Hence, goodness-of-fit statistics based on

the martingale-transformed process prove to be asymptotically distribution-free.

Therefore, they are a very appealing alternative to test statistics based on the

standard residual-based empirical processes.

Let us see how these results apply in our context. Observe that our null

hypothesis “H0 : F1(·) = F2(·)” is true if and only if the hypothesis “H∗0 : the dis-

tribution function of the error terms {ε1i}n1i=1 is F2(·)” is true, and this property

also holds if the role of the samples is interchanged in H∗0. Thus, our test is equiv-

alent to either of these two goodness-of-fit tests. If the distribution functions Fj(·)

were known, we could then derive the martingale-transformed processes for these

goodness-of-fit tests and then test our null hypothesis with any of them; but in our

context F1(·) and F2(·) are not known. However, as Bai (2003) points out, under

very mild conditions the replacement of unknown quantities by suitable estima-

tors in martingale-transformed processes does not affect the limit distributions.

This is the approach that we follow here.

As before, we assume that we can obtain well-behaved residuals bεji and the
residual-based empirical distribution functions bFjnj(·). The martingale-transfor-

med process that should be used to test whether the distribution function of the

error terms {εji}n1i=1 is F3−j(·), if F3−j(·) is known, is defined for x ∈ R as

cW jnj(x) := n
1/2
j [ bFjnj(x)−

Z x

−∞
q3−j(y)

0C3−j(y)
−1{
Z ∞

y

q3−j(z)d bFjnj(z)}f3−j(y)dy],

where qj(y) := (1, ḟj(y)/fj(y), 1+yḟj(y)/fj(y))0 andCj(y) :=
R∞
y

qj(w)qj(w)
0fj(w)
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dw. Therefore, to derive a feasible martingale-transformed process we require es-

timates of fj(y) and ḟj(y)/fj(y). We propose to use kernel estimators for fj(y)

and ḟj(y) but, for technical reasons, trimmed kernel estimators for ḟj(y)/fj(y).

Thus, we define bfj(y) := Pnj
i=1 ϕ{(y − bεji)/hjnj}/(njhjnj), ḃf j(y) := Pnj

i=1 ϕ̇{(y −bεji)/hjnj}/(njh2jnj), where, as before, ϕ(·) is a kernel density function and hjnj are
smoothing values,

bGj(y) :=

⎧⎪⎨⎪⎩
ḃf j(y)/ bfj(y) if |y| ≤ ajnj ,

bfj(y) ≥ bjnj ,
¯̄̄ḃf j(y)¯̄̄ ≤ cjnj

bfj(y)
0 otherwise,

where ajnj , bjnj and cjnj are trimming values, bqj(y) := (1, bGj(y), 1 + y bGj(y))
0

and bCj(y) :=
R∞
y
bqj(w)bqj(w)0 bfj(w)dw.With these estimates, we can construct the

estimated martingale-transformed process fW jnj(·), which is defined in the same

way as cW jnj(·), but replacing q3−j(·), C3−j(·) and f3−j(·) by bq3−j(·), bC3−j(·) andbf3−j(·). Using these processes we can obtain two Kolmogorov-Smirnov statistics
and two Cramér-von Mises ones. To define these statistics the supremum (in

the Kolmogorov-Smirnov case) and the integral (in the Cramér-von Mises case)

are not taken with respect to R, because the asymptotic equivalence between the

original martingale-transformed process cW jnj(·) and the estimated martingale-

transformed process fW jnj(·) is only proved at intervals (−∞, x0], with x0 ∈ R

(see Theorem 4 in Bai, 2003). Therefore, we consider the Kolmogorov-Smirnov

martingale-transformed statistics

K
(j)

n1,n2,x0
:= bFjnj(x0)

−1/2 sup
x∈(−∞,x0]

¯̄̄fW jnj(x)
¯̄̄
,

and the Cramér-von Mises ones

C
(j)

n1,n2,x0
:= bFjnj(x0)

−2n−1j

njX
i=1

I(bεji ≤ x0)
fW jnj(bεji)2,

where x0 is any fixed real number. The factor bFjnj(x0) is introduced in these

statistics in order to obtain an asymptotic distribution which does not depend on

13



x0. To derive the asymptotic properties of these statistics, the following additional

assumptions are required.

Assumption 7: The derivatives of the density functions ḟj(·) are Lipschitz con-

tinuous of order dj > 0, and Cj(y) are non-singular matrices for every

y ∈ [−∞,+∞).

Assumption 8: The kernel function ϕ(·) and its derivative ϕ̇(·) have bounded

total variation.

Assumption 9: The smoothing and trimming values satisfy that h2jnj = o(bjnj),

a−1jnj = o(1), bjnj = o(1), c−1jnj = o(1), hjnjcjnj = o(1), n−1j h−3jnja
3
jnj

= o(1),

log(h−1jnj)/(njhjnj) = o(b2jnj), ajnj = o(n
1/2
j h2jnjbjnj), hjnj lognj = o(1) and

ajnjh
2dj
jnj
lognj = o(bjnj).

The assumption about matrices Cj(y) ensures that the martingale transfor-

mation can be performed. Assumptions 8 and 9 ensure that the replacement of

the density functions and their derivatives by nonparametric estimates does not

affect the limit distributions. Note that assumption 9 allows us to choose the

optimal smoothing value hjnj = Mjn
−1/5
j for a fixed Mj, whereas there is plenty

of freedom for choosing the rates of convergence of the trimming values. Before

deriving the asymptotic properties of the statistics, we derive two properties of

the nonparametric estimators that are required later.

Proposition 4: If (1) and assumptions 1-4, 7-9 hold, α1j ≥ 1 and α2j ≥ 1, thenZ ∞

−∞
kbqj(y)− qj(y)k2 fj(y)dy = op(1). (3)

Proposition 5: If (1) and assumptions 1-4, 7-9 hold, α1j ≥ 1 and α2j ≥ 1, then

supx∈R

°°°n−1/2j

Pnj
i=1 [I(εji ≥ x){bqj(εji)− qj(εji)}

−
R∞
x
{bqj(y)− qj(y)}fj(y)dy

¤°° = op(1).
(4)
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Theorem 3: If (1) and assumptions 1-4, 7-9 hold, α1j ≥ 1, α2j ≥ 1 and n2 = λn1

for a fixed λ, then:

a) Under H 0, if Fj(x0) is in (0, 1),

K
(j)

n1,n2,x0

d→ sup
t∈[0,1]

|W (t)| and C
(j)

n1,n2,x0

d→
Z 1

0

{W (t)}2dt,

where W (·) is a standard Brownian motion on [0, 1].

b) Under H 1, if E(ε3ji) < ∞, there exists x∗ ∈ R such that if x0 ≥ x∗ then

for all x ∈ R,

P
³
K
(j)

n1,n2,x0 > x
´
→ 1 and P

³
C
(j)

n1,n2,x0 > x
´
→ 1.

Theorem 3 suggests that one can use either process fW 1n1(·) or fW 2n2(·) to

obtain asymptotically distribution-free statistics which are consistent against any

alternative, as long as a large enough x0 is selected. However, the behavior of test

statistics based on fW 1n1(·) and fW 2n2(·) may not be similar because their power

functions may be very different, as is shown by the simulation results that we

report below. For this reason, the test should be performed combining statistics

based on both processes; in this case, the following corollary applies.

Corollary: Let G : R2 → R be a continuous function. If the assumptions in

Theorem 3 hold, then:

a) Under H 0, if Fj(x0) is in (0, 1),

G(K
(1)

n1,n2,x0
, K

(2)

n1,n2,x0
)

d→ G(ς1, ς2) and

G(C
(1)

n1,n2,x0
, C

(2)

n1,n2,x0
)

d→ G(ζ1, ζ2),

where ς1, ς2 are independent random variables both with the same distribu-

tion as supt∈[0,1] |W (t)|, ζ1, ζ2 are independent random variables both with

the same distribution as
R 1
0
{W (t)}2dt, and W (·) is a standard Brownian

motion on [0, 1].
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b) Under H 1, if E(ε3ji) <∞ and limmin(y,z)→∞G(y, z) =∞, then there exists

x∗ ∈ R such that, if x0 ≥ x∗, for all x ∈ R

P{G(K(1)

n1,n2,x0
, K

(2)

n1,n2,x0
) > x}→ 1 and P{G(C(1)

n1,n2,x0
, C

(2)

n1,n2,x0
) > x}→ 1.

In the simulations that we report below, we choose the maximum as function

G(·, ·), i.e. we consider

Kn1,n2,x0 : = max{K(1)

n1,n2,x0
,K

(2)

n1,n2,x0
},

Cn1,n2,x0 : = max{C(1)

n1,n2,x0
, C

(2)

n1,n2,x0
}.

Other sensible choices would be G(x1, x2) = x21 + x22 or G(x1, x2) = |x1| + |x2|.

The crucial point is that the asymptotic null distributions do not depend on any

characteristic of the data, as long as the assumptions are met.

Asymptotic critical values for the Kolmogorov-Smirnov statistics can be de-

rived taking into account that the distribution function of supt∈[0,1] |W (t)| is

(4/π)
P∞

j=0(−1)j exp{−(2j+1)2π2/(8x2)}/(2j+1), see e.g. Shorack and Wellner

(1986, p. 34). From here it follows that the asymptotic critical values for K
(1)

n1,n2,x0

or K
(2)

n1,n2,x0
at the 10%, 5% and 1% significance levels are 1.960, 2.24 and 2.807;

and the asymptotic critical values for Kn1,n2,x0 at those levels are 2.231, 2.493

and 3.023. Asymptotic critical values for the Cramér-von Mises statistics can

be derived taking into account that the distribution function of
R 1
0
{W (t)}2dt is

23/2
P∞

j=0(−1)j[1−Φ{(4j+1)/(2x1/2)}] exp[ln{(2j)!}−2 ln(j!)]/4j, see e.g. Roth-

man and Woodroofe (1972). From here it follows that the asymptotic critical

values for C
(1)

n1,n2,x0 or C
(2)

n1,n2,x0 at the 10%, 5% and 1% significance levels are

1.196, 1.656 and 2.787; and the asymptotic critical values for Cn1,n2,x0 at those

levels are 1.638, 2.126 and 3.290.
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4 Simulations

In order to check the behavior of the statistics, we perform two Monte Carlo exper-

iments. In both cases we test the null hypothesis that the zero-mean unit-variance

errors ε1i and ε2i have the same distribution function at the 5% significance level.

In Experiment 1 we test whether two samples come from the same location-

scale model. Specifically, we generate i.i.d. observations {Y1i}n1i=1, each of them de-

fined as Y1i = µ1 + σ1ε1i, where µ1 = 1, σ1 = 1, ε1i = {V1i − E(V1i)}/Var(V1i)1/2,

and V1i is generated from an extreme-value distribution with density function

fV1(x) = exp{x − exp(x)}; and we generate i.i.d. observations {Y2i}n2i=1, each

of them defined as Y2i = µ2 + σ2ε2i, where µ2 = 2, σ2 = 2, ε2i = {V2i −

E(V2i)}/Var(V2i)1/2, and V2i is generated from a log-gamma distribution with

density function fV2(x) = exp{(1 + δ)x− exp(x)}/Γ(1 + δ). The value of δ varies

from one simulation to another; we consider δ = 0, 1, 2, 3, 4, 5. Observe that H0

holds if and only if δ = 0; as δ grows, the distribution of ε2i becomes closer to

the standard normal. The null hypothesis here amounts to saying that the dis-

tribution functions of Y1i and Y2i are the same except for changes in location and

scale. To compute the statistics, µj and σj are estimated by the sample mean and

variance of {Yji}nji=1.

In Experiment 2 we compare a normal distribution and a Student’s t distribu-

tion in a multiple regression with homoskedastic errors. Specifically, we generate

i.i.d. observations {(Y1i,X
0
1i)

0}n1i=1, where Y1i = β11+β12X11i+β13X12i+β14(X
2
11i−

1)(X2
12i − 1) + σ1ε1i, X1i, X2i and ε1i are all independent with standard normal

distribution, β11 = 0, β12 = β13 = 1, β14 = 0.2, and σ1 = 1; and we generate

i.i.d. {(Y2i, X
0
2i)

0}n2i=1 with the same characteristics as the first sample, except that

ε2i = V2i/Var(V2i)1/2, and the distribution of V2i is Student’s t with δ−1 degrees

of freedom. The values of δ that we consider are δ = 0, 1/9, 1/7, 1/5, 1/4, 1/3 (if

δ = 0, ε2i is generated from a standard normal distribution). Again, H0 is true
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if and only if δ = 0. To compute the statistics, residuals are based on the least

squares estimates obtained within each sample.

In all nonparametric estimations, the standard normal density is used as the

kernel function. In order to examine the effect of undersmoothing or oversmooth-

ing, we use three different smoothing values. To compute bKn1,n2 and bCn1,n2, we

consider h(l)n1,n2 =Ml(n1+ n2)
−1/5, for l = 1, 2, 3 and, for each sample size and ex-

periment, M2 is chosen after graphical inspection of some preliminary estimates,

M1 = 2M2/3 and M3 = 4M2/3. To compute K
(j)

n1,n2,x0
and C

(j)

n1,n2,x0
, we consider

h
(l)
jnj
= Mln

−1/5
j , for l = 1, 2, 3 and M1, M2 and M3 are selected as above. When

using bKn1,n2 and bCn1,n2, the critical values are computed with B = 500 bootstrap

replications. When using K
(j)

n1,n2,x0 and C
(j)

n1,n2,x0 , x0 is always chosen as the 95%

quantile of the residuals from the j-th sample. All the integrals that have to be

computed to obtain martingale-based statistics are approximated as follows: for

a given function H : R→ R,Z
A

H(x)dx ≈
mX
l=1

(yl − yl−1)H(
yl + yl−1

2
)I(

yl + yl−1
2

∈ A),

where yl := −8 + ∆l, ∆ := 0.0025 and m = 6400; we have checked that this

approximation yields very accurate results in all cases. For the sake of simplicity,

no trimming values are used when computing bGj(·).

In Tables 1 and 2 we report the proportion of rejections of H0 in 1000 simulation

runs using the Cramér-von Mises statistics. For the sake of brevity, we do not

include the results for Kolmogorov-Smirnov statistics, which are quite similar.

However, we do include the results for the infeasible Cramér-von Mises statistic

C
(IN)

n1,n2,x0 that is obtained when the martingale transformation is performed with

the true density functions of errors, i.e., C
(IN)

n1,n2,x0 := max{C(IN,1)

n1,n2,x0, C
(IN,2)

n1,n2,x0},

where C
(IN,j)

n1,n2,x0
:= bFjnj(x0)

−2n−1j
Pnj

i=1 I(bεji ≤ x0)
cW jnj(bεji)2.

TABLES 1 AND 2 HERE
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The results in these tables do not allow us to give a clear-cut answer to the

question of what test statistic should be preferred. Bootstrap-based statistics

perform reasonably well in terms of size and power in both experiments. Moreover,

bandwidth selection does not play a crucial role in their behavior. On the other

hand, the infeasible statistic based on martingale processes behaves extremely well

in terms of power, but the asymptotic critical value is not very accurate, which

results in a certain discrepancy between empirical size and significance level if

the sample sizes are not large enough. The feasible statistic based on martingale

processes continues to be very powerful, but now bandwidth selection does play a

crucial role, to the extent that slight deviations from the correct value may lead

to wrong decisions.

Another relevant conclusion that follows from our experiments is that there

may be big differences between C
(1)

n1,n2,x0
and C

(2)

n1,n2,x0
, even if infeasible statistics

are used. For example, in Experiment 2 with n1 = n2 = 150, if we generate ε1 from

a standard normal distribution and test the null hypothesis “H∗0 : the distribution

of ε1 is a standardized Student’s t distribution with δ−1 degrees of freedom” with

significance level 0.05, then the proportion of rejections is always below 0.10; but

if we generate ε2 from a standardized Student’s t distribution with δ
−1 degrees of

freedom and test the null hypothesis “H∗∗0 : the distribution of ε2 is a standard

normal” with significance level 0.05, then the proportion of rejection ranges from

0.25 (when δ−1 = 9) to 0.75 (when δ−1 = 3). So it is important to consider a test

statistic that combines C
(1)

n1,n2,x0
and C

(2)

n1,n2,x0
, since in practice we cannot know

in advance which of them would lead to a more powerful test.

5 Concluding Remarks

In this paper we suggest two alternative procedures for comparing the distribu-

tion functions of errors from two regression models that specify parametrically
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the conditional mean and variance. Firstly, we propose using statistics based

on residual empirical processes and approximating critical values with a smooth

bootstrap method. We derive conditions under which this bootstrap method is

consistent. Secondly, we propose using statistics based on martingale transforms

of the residual empirical processes, replacing the unspecified functions by non-

parametric estimates. We give conditions under which this replacement has no

effect on the asymptotic null distribution of the statistics. We compare the per-

formance of the two alternative procedures with two Monte Carlo experiments.

The results of these experiments suggest that the statistics based on martingale

transforms behave much better in terms of power, but they are too sensitive to

bandwidth selection and use asymptotic critical values that are not very accurate

with small sample sizes.

Two natural extensions stem from our work. The methodology that we de-

scribe here can also be used when the distribution functions of k regression errors

are to be compared, with k > 2, using k− 1 pairwise comparisons as suggested in

Neumeyer and Dette (2003, Remark 2.5); our results may well continue to hold in

this context, at the expense of some more complex notation. On the other hand,

we could also consider a purely nonparametric framework, i.e., comparing the

distribution functions of errors from two nonparametrically specified regression

models. However, the extension of our results to this context is far from trivial. It

might be possible to use the results derived in Akritas and Van Keilegom (2001)

to derive the asymptotic properties of statistics based on empirical processes con-

structed with nonparametric residuals, but their results are valid only for models

with a single explanatory variable. Additionally, in nonparametric regression,

the oscillation-like result which relates error-based and residual-based empirical

processes does not guarantee that a suitable martingale transform exists.
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6 Proofs

The following lemma is required in the proof of Proposition 1.

Lemma 1: Let f(·) be a continuous real function such that supx∈R |xf(x)| <

∞. If the sequence of real functions {ξn(·)}n∈N satisfies that |ξn(x)| ≤ 1 and

{an}n∈N is a sequence such that an = o(1), then supx∈R |xf{x[1 + ξn(x)an]}| =

O(1).

Proof: As h(x1, x2) = |x1f(x2)| is a continuous function, it is bounded in a

neighborhood of (0, 0)0. If x and xn := x[1+ξn(x)an] are not in that neighborhood

then |xf(xn)| = |x/xn| |xnf(xn)| ≤ [1 + ξn(x)an]
−1 supx∈R |xf(x)| = O(1). ¥

Proof of Proposition 1: We apply Theorem 1 in Bai (2003) to our j-th

regression model. The relationship between the notation in Bai (2003) and our

notation is as follows: Fi(x | Ωi, θ) ≡ Fj[{x − µj(Xji, θj)}/σj(Xji, θj)], Ui ≡

Fj(εji), bUi ≡ Fj(bεji), bVn(r) ≡ bVjnj(r), Vn(r) ≡ Vjnj(r) and ḡ(r) ≡ −ωjgj(r). To

check that our assumptions imply that assumption A1 in Bai (2003) holds, note

that for fixed M > 0, if supu denotes the supremum for ku− θjk ≤Mn
−1/2
j , then

sup
x∈R

sup
u

°°°°∂Fi

∂θ
(x | Ωi, u)

°°°°2 ≤ 2 sup
x∈R

¯̄̄̄
fj

½
x− µj(Xji, θj)

σj(Xji, θj)

¾¯̄̄̄2
sup
u

°°°° µ̇j(Xji, u)

σj(Xji, u)

°°°°2

+2 sup
x∈R

¯̄̄̄
x− µj(Xji, θj)

σj(Xji, θj)
fj

½
x− µj(Xji, θj)

σj(Xji, θj)

¾¯̄̄̄2
sup
u

°°°° σ̇j(Xji, u)

σj(Xji, u)

°°°° .
Now, from our assumption 2,

E

(
sup
u

°°°° µ̇j(Xji, u)

σj(Xji, u)

°°°°2
)
≤
2E{M3(Xji)

2}(Mn
−1/2
j )2α3j + 2E{k µ̇j(Xji, θj) k2}

S2j
,

and a similar inequality holds for E{supu kσ̇j(Xji, u)/σj(Xji, u)k2}. From here it

follows that E{supx∈R supu
°°∂Fi

∂θ
(x | Ωi, u)

°°2} is bounded, and all other conditions
of assumption A1 in Bai (2003) readily follow from our assumptions 1 and 2.

To check that our assumptions imply that assumption A2 in Bai (2003) holds,

note that if we define ηji(t, u, v) := {F−1j (t)σj(Xji, u) + µj(Xji, u) − µj(Xji, v)}/
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σj(Xji, v) and hj(x) := xfj(x), then°°°°°n−1
nX
i=1

∂Fi

∂θ
{F−1i (t | Ωi, u) | Ωi, v}− ḡ(r)

°°°°° =°°°°°n−1j
njX
i=1

fj{ηji(t, u, v)}
½
µ̇j(Xji, v)

σj(Xji, v)
+ ηji(t, u, v)

σ̇j(Xji, v)

σj(Xji, v)

¾
+ ḡ(r)

°°°°° ≤°°°°°n−1j
njX
i=1

fj{ηji(t, u, v)}
∙
µ̇j(Xji, v)

σj(Xji, v)
− E

½
µ̇j(Xji, θj)

σj(Xji, θj)

¾¸°°°°°+°°°°°n−1j
njX
i=1

[fj{ηji(t, u, v)}− fj{F−1j (t)}]
°°°°°
°°°°E½ µ̇j(Xji, θj)

σj(Xji, θj)

¾°°°°+°°°°°n−1j
njX
i=1

hj{ηji(t, u, v)}
∙
σ̇j(Xji, v)

σj(Xji, v)
− E

½
σ̇j(Xji, θj)

σj(Xji, θj)

¾¸°°°°°+°°°°°n−1j
njX
i=1

[hj{ηji(t, u, v)}− hj{F−1j (t)}]
°°°°°
°°°°E½ σ̇j(Xji, θj)

σj(Xji, θj)

¾°°°° =
(I) + (II) + (III) + (IV ), say.

Now observe that if C1j is a bound for fj(·) and, for fixed M , supu,v denotes the

supremum for ku− θjk ≤Mn
−1/2
j and kv − θjk ≤Mn

−1/2
j , then

sup
t∈[0,1]

sup
u,v

(I) ≤ C1j

(
sup
u,v

°°°°°n−1j
njX
i=1

µ̇(Xji, v)− µ̇(Xji, θj)

σ(Xji, v)

°°°°°+
sup
u,v

°°°°°n−1j
njX
i=1

µ̇(Xji, θj)
σ(Xji, θj)− σ(Xji, v)

σ(Xji, v)σ(Xji, θj)

°°°°°+°°°°°n−1j
njX
i=1

∙
µ̇j(Xji, θj)

σj(Xji, θj)
−E

½
µ̇j(Xji, θj)

σj(Xji, θj)

¾¸°°°°°
)
.

Now using that σj(·, v) is bounded away from zero in a neighborhood of θj and

the Lipschitz-continuity of µ̇j(·, ·) and σj(·, ·), it follows that the first two terms

on the right-hand side of the previous inequality are Op(1)o(1), whereas the third

term is op(1) by the weak law of large numbers; hence supt∈[0,1] supu,v(I) = op(1).

As hj(·) is also bounded and σ̇j(·, ·) is also Lipschitz-continuous, with the same

reasoning it follows that supt∈[0,1] supu,v(III) = op(1). To analyze (II), note that
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if we add and subtract fj{F−1j (t)σj(Xji, u)/σj(Xji, v)} and apply the mean-value

theorem twice then

fj{ηji(t, u, v)}− fj{F−1j (t)}

= ḟj

(
F−1j (t)σj(Xji, u)

σj(Xji, v)
+ ξ1

µj(Xji, u)− µj(Xji, v)

σj(Xji, v)

)
µj(Xji, u)− µj(Xji, v)

σj(Xji, v)

+ḟj

½
F−1j (t)[1 + ξ2

σj(Xji, u)− σj(Xji, v)

σj(Xji, v)
]

¾
F−1j (t)

σj(Xji, u)− σj(Xji, v)

σj(Xji, v)
,

where ξ1, ξ2 are in [0, 1]. Again, using Lipschitz-continuity and the lower bound

for σj(·, v) it follows that supu,v n−1j
Pnj

i=1

¯̄
µj(Xji, u)− µj(Xji, v)

¯̄
/σj(Xji, v) =

Op(1)o(1), and supu,v n
−1
j

Pnj
i=1 |σj(Xji, u)− σj(Xji, v)| /σj(Xji, v) = Op(1)o(1);

hence, if C2j is a bound for ḟj(·) and C3j is the bound for xḟj(x[1+ξ2{σj(Xji, u)−

σj(Xji, v)}/σj(Xji, v)]) which is obtained by applying Lemma 1 above, it follows

that supt∈[0,1] supu,v(II) ≤ {C2jOp(1)o(1) +C3jOp(1)o(1)}E{
°°µ̇j(Xji, θj)

°°}S−1j =

op(1). And since ḣj(·) is also bounded and satisfies the conditions required in

Lemma 1, with the same reasoning it also follows that supt∈[0,1] supu,v(IV ) =

op(1). On the other hand,
R 1
0

°°(1, ġ(r)0)°°2dr ≤ 1 + °°E{µ̇j(Xji, θj)/σj(Xji, θj)}
°°2

E{ḟj(εji)2/fj(εji)2} + kE{σ̇j(Xji, θj)/σj(Xji, θj)}k2 [2+2E{ε2jiḟj(εji)2/fj(εji)2}],

which is finite by our assumptions 1 and 2. This completes the proof that all

assertions of the assumption A2 in Bai (2003) hold, except (possibly) for the

condition on C(s), which in fact is not required for his Theorem 1 to hold.

Finally, note that our assumption 3 readily implies that assumption A3 in Bai

(2003) holds, whereas his assumption A4 is not required in our context because

there is no information truncation. Thus we can apply Theorem 1 in Bai (2003),

and then (2) follows from our assumption 3 and equation (2) in Bai (2003). ¥

Proof of Theorem 1: First we prove the theorem for bKn1,n2. Note that,

under H0, bKn1,n2 = supt∈[0,1]

¯̄̄ bDn1,n2(t)
¯̄̄
, where for t ∈ [0, 1] we define

bDn1,n2(t) := {λ/ (λ+ 1)}
1/2 bV1n1(t)− {1/ (λ+ 1)}1/2 bV2n2(t), (5)
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Thus, it suffices to prove that bDn1,n2(·) converges weakly to D(1)(·). From (2)

and (5), it follows that bDn1,n2(·) has the same asymptotic behavior as eDn1,n2(·) :=

{λ/ (λ+ 1)}1/2 {V1n1(·) + g1(·)0ξ1n1} − {1/ (λ+ 1)}
1/2 {V2n2(·) + g2(·)0ξ2n2}. Now

observe that E{ eDn1,n2(t)} = 0, and routine calculations yield that limnj→∞

Cov{Vjnj(s) +gj(s)0ξjnj , Vjnj(t)+ gj(t)
0ξjnj} = min(s, t)− st+Λj(s, t, θj). Hence,

the covariance function of eDn1,n2(·) converges to that of D(1)(·). Using a stan-

dard multivariate central limit theorem it follows then that the finite dimensional

distributions of eDn1,n2(·) converge to those of D(1)(·). Additionally, as gj(t)0ξjnj
only depends on t through fj{F−1j (t)} and F−1j (t), from assumption 1 it read-

ily follows that eDn1,n2(·) is tight, which completes the proof of part a. On the

other hand, under our assumptions supx∈R
¯̄̄ bFjnj(x)− Fj(x)

¯̄̄
= op(1), and hence

supx∈R

¯̄̄ bF1n1(x)− bF2n2(x)¯̄̄ converges in probability to supz∈R |F1(x)− F2(x)| . Un-

der H1, supz∈R |F1(x)− F2(x)| > 0, and part b follows from there.

As regards bCn1,n2, first note that if bFn1,n2(·) denotes the empirical distribution

function based on the n1+n2 residuals, then bCn1,n2 = {n1n2/(n1+n2)}
R
{ bF1n1(x)−bF2n2(x)}2d bFn1,n2(x). Using similar arguments to those in part c of Proposition

A1 in Delgado and Mora (2000), it follows that bCn1,n2 = eCn1,n2 + op(1), whereeCn1,n2 := {n1n2/(n1 + n2)}
R
{ bF1n1(x) − bF2n2(x)}2dFM(x), and FM(·) := {1/(1 +

λ)}F1(·) + {λ/(1 + λ)}F2(·). Now, under H0, eCn1,n2 =
R 1
0
{ bDn1,n2(t)}2dt, and part

a follows from there as before. On the other hand,
R
{ bF1n1(x)− bF2n2(x)}2dFM(x)

converges in probability to
R
{F1(x) − F2(x)}2dFM(x); under H1 this integral is

positive, which completes the proof of part b. ¥

Proof of Proposition 2: The proof is similar to the proof of Theorem 2.6

in Rao and Sethuraman (1975) and the proof of Lemma 1 in Loynes (1980).

However, it is more complicated due to the fact that we consider a random

(conditional) probability measure P ∗n1,n2(·) = P (· | Yn1,n2) and the random vari-

ables ε∗ji are not i.i.d. but have (conditional) distribution function eFn1,n2. Hence
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we present the proof in detail. For ease of notation we write sj(Xji,bθj,bθ∗j) :=
σj(Xji,bθ∗j)/σj(Xji,bθj), mj(Xji,bθj,bθ∗j) := {µj(Xji,bθ∗j)− µj(Xji,bθj)}/σj(Xji,bθj),

Rn1,n2(y,
bθ∗j) := n

−1/2
j

njX
i=1

h
I
n
ε∗ji ≤ ysj(Xji,bθj,bθ∗j) +mj(Xji,bθj,bθ∗j)o

− eFn1,n2

³
ysj(Xji,bθj,bθ∗j) +mj(Xji,bθj,bθ∗j)´− I{ε∗ji ≤ y}+ eFn1,n2(y)

i
.

To prove the proposition we show that for every fixed M > 0 and for all α > 0,

P
³
sup
y∈R

sup
η: ||η−bθj ||≤ M√

nj

|Rn1,n2(y, η)| > α
¯̄̄
Yn1,n2

´
= op(1). (6)

Note that from assumption 6 it follows that there exists M > 0, such that

P
³
k bθ∗j − bθj k≤ M

√
nj

¯̄̄
Yn1,n2

´
−→ 1 in probability.

To derive (6), first of all cover {η ∈ Θj | ||η − bθj|| ≤ M/
√
nj} using K =

O( −kj) balls B1, . . . , BK with centers η1, . . . , ηK and radius /
√
nj, where the

constant will be specified later. Applying assumption 2 we obtain for all η ∈ Bk,

|sj(x,bθj, η)− sj(x,bθj, ηk)| ≤M2j(x) /(Sj
√
nj) and |mj(x,bθj, η)−mj(x,bθj, ηk)| ≤

M1j(x) /(Sj
√
nj). With the definitions

xLi,nj ,k(y) = ysj(Xji,bθj, ηk) +mj(Xji,bθj, ηk)− √nj (yM2j(Xij) +M1j(Xji))/Sj

xUi,nj ,k(y) = ysj(Xji,bθj, ηk) +mj(Xji,bθj, ηk) + √nj (yM2j(Xij) +M1j(Xji))/Sj

we have the bracketing

xLi,nj ,k(y) ≤ ysj(Xji,bθj, η) +mj(Xji,bθj, η) ≤ xUi,nj ,k(y)

and therefore

I{ε∗ji ≤ xLi,nj ,k(y)} ≤ I{ε∗ji ≤ ysj(Xji,bθj, η)+mj(Xji,bθj, η))} ≤ I{ε∗ji ≤ xUi,nj ,k(y)}

for all η ∈ Bk. In the following we concentrate only on the upper bound. The lower

bound is treated exactly in the same way and we then use the argumentation that
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from a bracketing at ≤ xt ≤ bt follows supt |xt| ≤ supt |at|+ supt |bt|. To estimate

supy∈R sup||η−bθj ||≤M/
√
nj
|Rn1,n2(y, η)| in (6) we now only have to consider

max
k=1,...,K

sup
y∈R

¯̄̄
n
−1/2
j

njX
i=1

[I{ε∗ji ≤ xUi,nj ,k(y)}− I{ε∗ji ≤ y} (7)

− eFn1,n2(x
U
i,nj ,k

(y)) + eFn1,n2(y)]
¯̄̄
.

The remainder is estimated as follows using a Taylor expansion (where η ∈ Bk),

n
−1/2
j

njX
i=1

¯̄̄ eFn1,n2

³
ysj(Xji,bθj, η) +mj(Xji,bθj, η)´− eFn1,n2(x

U
i,nj ,k

(y))
¯̄̄

≤ 2n
−1/2
j

njX
i=1

h
sup
y∈R

| efn1,n2(y)|M1j(Xji)

Sj
√
nj

+ sup
y∈R

|y efn1,n2(y∗)|M2j(Xji)

Sj
√
nj

i
,

where y∗ converges in probability to y as nj →∞. From the uniform convergence

of efn1,n2 to fM in probability, Lemma 1, the law of large numbers and Assumption

2, we obtain the bound Op(1), which can be made arbitrarily small for a proper

choice of (in probability).

Next we split the interval [0, 1] into L =
√
nj/λ intervals of length λ/

√
nj

using points 0 = t0 < t1 < · · · < tL = 1. For = 0, . . . , L we define y and ỹ via

FM(y ) = t and FM(x
U
i,nj ,k

(ỹ )) = t (we suppress the dependence from i, nj, k for

ease of notation). For every y ∈ R there are and ,̃ such that y −1 ≤ y ≤ y

and ỹ −̃1 ≤ y ≤ ỹ .̃ These indices and ˜ are linked because FM(y ) = t =

FM(x
U
i,nj ,k

(ỹ )) = FM(ỹ ) + op(1). Therefore in the following we assume = ˜ to

simplify the demonstration of the proof. From the monotonicity of the functions

y 7→ eFn1,n2(y) and y 7→ eFn1,n2(x
U
i,nj ,k

(y)) we obtain the bracketing

I{ε∗ji ≤ xUi,nj ,k(ỹ −1)}− I{ε∗ji ≤ y }− eFn1,n2(x
U
i,nj ,k

(ỹ )) + eFn1,n2(y −1)

≤ I{ε∗ji ≤ xUi,nj ,k(y)}− I{ε∗ji ≤ y}− eFn1,n2(x
U
i,nj ,k

(y)) + eFn1,n2(y)

≤ I{ε∗ji ≤ xUi,nj ,k(ỹ )}− I{ε∗ji ≤ y −1}− eFn1,n2(x
U
i,nj ,k

(ỹ −1)) + eFn1,n2(y ).

As before, we restrict our considerations to the upper bound. Instead of (7) it
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suffices to estimate

max
k=1,...,K
=1,...,L

¯̄̄
n
−1/2
j

njX
i=1

[I{ε∗ji ≤ xUi,nj ,k(ỹ )}− I{ε∗ji ≤ y −1} (8)

− eFn1,n2(x
U
i,nj ,k

(ỹ )) + eFn1,n2(y −1)]
¯̄̄
.

The remainder is treated as follows,

n
1/2
j | eFn1,n2(y )− eFn1,n2(y −1)| (9)

+ n
−1/2
j

njX
i=1

| eFn1,n2(x
U
i,nj ,k

(ỹ ))− eFn1,n2(x
U
i,nj ,k

(ỹ −1))|

≤ n
1/2
j sup

t∈[0,1]

¯̄̄ ∂
∂t
( eFn1,n2 ◦ F−1M )(t)

¯̄̄n
|FM(y )− FM(y −1)|

+ n−1j

njX
i=1

|FM(x
U
i,nj ,k

(ỹ ))− FM(x
U
i,nj ,k

(ỹ −1))|
o

= 2λ sup
y∈R

¯̄̄ efn1,n2(y)
fM(y)

¯̄̄
= λOp(1)

and can be made arbitrarily small by proper choice of λ, in probability.

From now on we can follow the proof of Rao and Sethuraman (1975, p. 307)

or Loynes (1980, p. 293) by writing (8) as

max
k=1,...,K
=1,...,L

¯̄̄
n
−1/2
j

njX
i=1

Wi,nj ,k,

¯̄̄
,

where Wi,nj ,k, = (Bi,nj ,k, − |pi,nj ,k, |)sign(pi,nj ,k, ), pi,nj ,k, = eFn1,n2(x
U
i,nj ,k

(ỹ )) −eFn1,n2(y −1), and under the conditional probability measure P ∗n1,n2 the random

variables Bi,nj ,k, = |I{ε∗ji ≤ xUi,nj ,k(ỹ )} − I{ε∗ji ≤ y −1}| are independent and

Bernoulli distributed with probability |pi,nj ,k, |. From the proofs cited we see that

we can derive our assertion (6) by proving n−1/2j

Pnj
i=1 |pi,nj ,k, | = Op(1) uniformly

in k, . We have with y −1 ≤ y ≤ y and ỹ −1 ≤ y ≤ ỹ ,

n
−1/2
j

njX
i=1

|pi,nj ,k, | ≤ n
−1/2
j

njX
i=1

n
| eFn1,n2(x

U
i,nj ,k

(ỹ ))− eFn1,n2(x
U
i,nj ,k

(y))|

+ | eFn1,n2(x
U
i,nj ,k

(y))− eFn1,n2(y)|+ | eFn1,n2(y)− eFn1,n2(y −1)|
o
.
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The first and last terms can be treated in exactly the same way as (9) due to the

monotonicity of y 7→ eFn1,n2(y) and y 7→ eFn1,n2(x
U
i,nj ,k

(y)). The asymptotic order

is λOp(1). By the definition of xUi,nj ,k(y) and a Taylor expansion the middle term

is equal to

1
√
nj

njX
i=1

¯̄̄ eFn1,n2

³
ysj(Xji,bθj, ηk) +mj(Xji,bθj, ηk) + (yM2j(Xij) +M1j(Xji))

Sj
√
nj

´
− eFn1,n2(y)

¯̄̄
≤ sup

y∈R
| efn1,n2(y)|h 1

√
nj

njX
i=1

|mj(Xji,bθj, ηk)|+ njSj

njX
i=1

M1j(Xji)
i

+
1
√
nj

njX
i=1

sup
y∈R

| efn1,n2(y∗)y|n|sj(Xji,bθj, ηk)− 1|+ njSj

njX
i=1

M2j(Xji)
o

≤ Op(1)
³ 1
√
nj

njX
i=1

(M1j(Xji) +M2j(Xji)) k bθj − ηk k + Op(1)
´

= Op(1)(M Op(1) + Op(1))) = Op(1)

and this concludes the proof. ¥

Proof of Proposition 3: From Proposition 2 it follows that bV ∗jnj and Vjnj +eV ∗jnj , where eV ∗jnj is as defined in Proposition 2, are asymptotically equivalent
(in terms of conditional weak convergence in probability). We further define

V̌ ∗jnj(t) := n
1/2
j

R
Gn1,n2(x, t)dFXj(x), where

Gn1,n2(x, t) = eFn1,n2

³ eF−1n1,n2
(t)

σj(x,bθ∗j)
σj(x,bθj) + µj(x,bθ∗j)− µj(x,bθj)

σj(x,bθj)
´
− t = op(1)

for all x, uniformly in t (this follows applying a Taylor expansion; compare the

proof below). Denote the empirical distribution function of Xj1, . . . , Xjnj by

FXj ,nj ; then n
1/2
j (FXj ,nj − FXj) converges to a Gaussian process and hence

eV ∗jnj(t)− V̌ ∗jnj(t) =

Z
Gn1,n2(x, t)d(

√
nj(FXj ,nj − FXj))(x)

= op(1) = oP∗n1,n2 (1) in probability, (10)

where P ∗n1,n2(·) denotes the conditional probability measure P (· | Yn1,n2) and the

notation “Zn1,n2 = oP∗n1,n2 (1) in probability” means P (Zn1,n2 > | Yn1,n2) = op(1)
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for all > 0. The last equality in (10) follows from Markov’s inequality. By a

Taylor expansion of eFn1,n2 we further obtain the asymptotic equivalence of V̌
∗
jnj
(t)

and the process

√
nj

Z efn1,n2( eF−1n1,n2
(t∗))

³ eF−1n1,n2
(t)

σj(x,bθ∗j)− σj(x,bθj)
σj(x,bθj) +

µj(x,bθ∗j)− µj(x,bθj)
σj(x,bθj)

´
dFXj(x),

where eF−1n1,n2
(t∗) lies between eF−1n1,n2

(t) and

eF−1n1,n2
(t)

σj(x,bθ∗j)− σj(x,bθj)
σj(x,bθj) +

µj(x,bθ∗j)− µj(x,bθj)
σj(x,bθj)

=
³ eF−1n1,n2

(t)
σ̇j(x,bθj)
σj(x,bθj + µ̇j(x,bθj)

σj(x,bθj)
´
(bθ∗j − bθj) + oP∗n1,n2 (

1
√
nj
) = OP∗n1,n2

(
1
√
nj
)

from assumptions 2 and 6. Therefore eF−1n1,n2
(t∗) − eF−1n1,n2

(t) converges to zero (in

probability) and we obtain

| efn1,n2( eF−1n1,n2(t
∗))− efn1,n2( eF−1n1,n2(t))|

≤ |fM( eF−1n1,n2
(t∗))− fM( eF−1n1,n2

(t))|+ 2 sup
y
| efn1,n2(y)− fM(y)|.

These terms converge to zero uniformly in t (in probability) by the uniform con-

tinuity of fM (assumption 1) and by the uniform convergence of efn1,n2 (compare
our assumptions 4 and 5 and Koul and Lahiri, 1994). We obtain the asymptotic

equivalence of V̌ ∗jnj(t) andZ efn1,n2( eF−1n1,n2(t))
³ eF−1n1,n2(t)

σ̇j(x,bθj)
σj(x,bθj)(bθ∗j − bθj) + µ̇j(x,bθj)

σj(x,bθj)(bθ∗j − bθj)
´
dFXj(x)

uniformly in t ∈ [0, 1] in probability. The assertion of the Lemma now follows

from assumption 6. ¥

Proof of Theorem 2: As convergence in probability is equivalent to the ex-

istence of almost surely convergent subsequences in every subsequence, we restrict

our proof to the case of almost sure convergence of bθj to θj and show almost sure
convergence of P ( bK∗

n1n2 ≤ x | Yn1,n2). From Proposition 3 we have asymptotic
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equivalence in terms of weak convergence, conditionally on the sample Yn1,n2, of

the test statistic bK∗
n1n2 and supt∈[0,1] | eD∗

n1n2(t)|, where

eD∗
n1n2

(t) =

r
λ

1 + λ
(V ∗1n1(t) + eg1(t)0bξ∗1n1)−r 1

1 + λ
(V ∗2n2(t) + eg2(t)0bξ∗2n2)

=
2X

j=1

1
√
nj

njX
i=1

αj∆
∗
j(Xji, ε

∗
ji, t)

and ∆∗j(z, u, t) = I{u ≤ eF−1n1,n2
(t)} − t + egj(t)0ω∗0j ψj(z, u,bθj), α1 = q

λ
1+λ
, α2 =

−
q

1
1+λ
. Note that this process is by assumption centered with respect to the

conditional expectation. In the following we show weak convergence (condition-

ally on Yn1,n2) of eD∗
n1n2 to the Gaussian process D

(1) for almost all samples Yn1,n2
(compare the proof of Theorem 1, Stute et al., 1998). First we show conditional

convergence of the finite dimensional distributions. To keep the proof more read-

able we demonstrate the validity of Lindeberg’s condition only for the statistic

Z∗nj ,1(t) = n
−1/2
j

njX
i=1

efn1,n2( eF−1n1,n2
(t))

Z
µ̇j(x,bθj)0
σj(x,bθj) dFXj(x)ψj(Xji, ε

∗
ji,
bθj)

= n
−1/2
j

njX
i=1

∆∗j,1(Xji, ε
∗
ji, t),

where t ∈ [0, 1] is fixed. The sequence efn1,n2( eF−1n1,n2
(t)) converges almost surely

to fM(F−1M (t)) (this follows from Koul and Lahiri, 1994, our assumptions 4 and 5

and the additional assumption made in this section that bθj converges a.s.) and
is therefore bounded;

R
µ̇j(x,bθj)/σj(x,bθj)dFXj(x) is also bounded because of the

almost sure convergence of bθj to θj and assumption 2. We then have for a constant
C that

Lnj(δ) =
1

nj

njX
i=1

E
h³

∆∗j,1(Xji, ε
∗
ji, t))

2I{|∆∗j,1(Xji, ε
∗
ji, t)| > n

−1/2
j δ}

¯̄̄
Yn1,n2

i
≤ C2E

h
||ψj(Xj1, ε

∗
j1,
bθj)||2I{||ψj(Xj1, ε

∗
j1,
bθj)|| > n

1/2
j δ/C}

¯̄̄
Yn1,n2

i
a.s.

= C2

Z Z
||ψj(x, u,bθj)||2I{||ψj(x, u,bθj)|| > n

1/2
j δ/C} efn1,n2(u)dudFXj(x)

converges to zero almost surely for nj → ∞ (compare Lemma 3.2 and the proof

of Theorem 2.1 in Koul and Lahiri, 1994).
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To show conditional tightness almost surely, we also confine ourselves to the

process Z∗nj ,1 defined above. Tightness of

Z∗nj ,2(t) = n
−1/2
j

njX
i=1

efn1,n2( eF−1n1,n2
(t)) eF−1n1,n2

(t)

Z
σ̇j(x,bθj)0
σj(x,bθj) dFXj

(x)ψj(Xji, ε
∗
ji,
bθj)

follows in a similar manner and tightness of the uniform process

n
−1/2
j

Pnj
i=1[I{ε∗ji ≤ eF−1n1,n2

(t)} − t] = n
−1/2
j

Pnj
i=1[I{U∗ji ≤ t} − t], where the U∗ji

are i.i.d. uniform on [0, 1], is evident. Considering the stochastic equicontinuity

condition for Z∗nj ,1 we obtain the following for > 0, δ > 0, applying Chebyshev’s

inequality:

P
³
sup

s,t∈[0,1]
|s−t|<δ

|Z∗nj ,1(s)− Z∗nj ,1(t)| >
¯̄̄
Yn1,n2

´
≤ C2

2

Z Z
k ψj(x, u,bθj) k2 efn1,n2(u)dudFXj(x)

×
³
sup

s,t∈[0,1]
|s−t|<δ

¯̄̄ efn1,n2( eF−1n1,n2
(t))− efn1,n2( eF−1n1,n2

(s))
¯̄̄´2

a.s.

The integral is almost surely bounded. We further estimate

sup
s,t∈[0,1]
|s−t|<δ

¯̄̄ efn1,n2( eF−1n1,n2
(t))− efn1,n2( eF−1n1,n2

(s))
¯̄̄

≤ sup
s,t∈[0,1]
|s−t|<δ

|fM(F−1M (t))− fM(F
−1
M (s))|+ 2 sup

s∈[0,1]

¯̄̄ efn1,n2( eF−1n1,n2
(s))− fM(F

−1
M (s))

¯̄̄
.

The first term converges to zero as δ & 0 because fM{F−1M (·)} is uniformly con-

tinuous by assumption 1. The second term converges to zero almost surely as

nj → ∞ analogously to Lemma 3.3 in Koul and Lahiri (1994). This proves con-

ditional tightness of Z∗nj ,1 in the sense that for almost all sequences Yn1,n2 and for

all > 0,

lim
δ&0

lim sup
n→∞

P
³
sup
s,t∈[0,1]
|s−t|<δ

|Z∗nj ,1(s)− Z∗nj ,1(t)| >
¯̄̄
Yn1,n2

´
= 0.
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Finally, the conditional covariances of the process eD∗
n1n2

are

Cov( eD∗
n1n2

(s), eD∗
n1n2

(t) | Yn1,n2)

=
2X

j=1

1

nj

njX
i=1

α2jE[∆
∗
j(Xji, ε

∗
ji, s)∆

∗
j(Xji, ε

∗
ji, t) | Yn1,n2 ]

= min(s, t)− st+ {λ/(λ+ 1)}Λ∗1(s, t) + {1/(λ+ 1)}Λ∗2(s, t),

where

Λ∗j(s, t) = egj(s)0ω∗0j E[ψj(Xji, ε
∗
ji,
bθj)I{ε∗ji ≤ eF−1n1,n2(t)} | Yn1,n2]

+ egj(t)0ω∗0j E[ψj(Xji, ε
∗
ji,
bθj)I{ε∗ji ≤ eF−1n1,n2

(s)} | Yn1,n2]

+ egj(s)0ω∗0j E[ψj(Xji, ε
∗
ji,
bθj)ψj(Xji, ε

∗
ji,
bθj)0 | Yn1,n2 ]ω∗jegj(t).

Taking into account the almost sure convergence of efn1,n2(·) to fM(·), bθj to θj

and applying the dominated convergence theorem to the integrals, it follows that

this conditional covariance converges almost surely to the covariance Cov(D(2)(s),

D(2)(t)) defined in Theorem 2. Thus, the assertion of Theorem 2 for the test

statistic bK∗
n1n2

follows from the continuous mapping theorem.

When bFn1,n2(·) denotes the empirical distribution function of all n1+n2 resid-

uals bεji, for the second test statistic we have
bC∗n1n2 =

n1n2
n1 + n2

Z
( bF ∗1n1(y)− bF ∗2n2(y))2d bFn1,n2(y)

=

Z 1

0

( bD∗
n1,n2

(t))2dt+
Z 1

0

( bD∗
n1,n2

(t))2d(( bFn1,n2 − eFn1,n2) ◦ eF−1n1,n2
(t)),

where bD∗
n1,n2

=
p
λ/(1 + λ)bV ∗1n1 − 1/√1 + λbV ∗2n2. From the already shown as-

ymptotic equivalence of bD∗
n1,n2

and eD∗
n1n2

, the weak convergence of eD∗
n1n2

and the

almost sure convergence of supy∈R | bFn1,n2(y)− eFn1,n2(y)| to zero we can derive thatbC∗n1n2 is asymptotically equivalent to R 10 ( eD∗
n1n2(t))

2dt. ¥

The following three lemmas are required in the proof of Proposition 4. Lemma

2 extends a well-known inequality in nonparametric estimation (see e.g. Hájek and
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Sidák 1967, p. 17). Lemma 3 extends the results of contiguous measures in location

and scale derived in Hájek and Sidák (1967), Sections VI.1 and VI.2.

Lemma 2: If assumptions 1, 4 hold and hjnj = o(1), thenZ ∞

−∞
(1 + y2)ḟ j(y)

2/f j(y)dy = O(1), (11)

where f j(y) := h−1jnj
R∞
−∞ fj(w)ϕ{(y−w)/hjnj}dw and ḟ j(y) := h−2jnj

R∞
−∞ fj(w)ϕ̇{(y−

w)/hjnj}dw.

Proof: First observe that f j(y) and ḟ j(y) can also be expressed as
R∞
−∞ fj(y−

hjnjz)ϕ(z)dz and
R∞
−∞ ḟj(y − hjnjz)ϕ(z)dz, respectively. Thus,

ḟ j(y)
2 ≤

½Z ∞

−∞

¯̄̄
ḟj(y − hjnjz)

¯̄̄
ϕ(z)dz

¾2
≤

f j(y)

Z ∞

−∞

ḟj(y − hjnjz)
2

fj(y − hjnjz)
ϕ(z)dz = f j(y)

Z ∞

−∞

ḟj(w)
2

fj(w)
ϕ(

y − w

hjnj
)
1

hjnj
dw,

where the second inequality follows by applying Cauchy-Schwarz inequality with

X = fj(y−hjnjZ)1/2 and Y = ḟj(y−hjnjZ)/fj(y−hjnjZ)1/2, for a random variable

Z with density function ϕ(·). Hence, the left-hand side of (11) is bounded byZ ∞

−∞

Z ∞

−∞
(1 + y2)

ḟj(w)
2

fj(w)
ϕ(

y − w

hjnj
)
1

hjnj
dwdy ≤

Z ∞

−∞

Z ∞

−∞
(1 + 2w2)

ḟj(w)
2

fj(w)
ϕ(

y − w

hjnj
)
1

hjnj
dwdy+

Z ∞

−∞

Z ∞

−∞
2(y − w)2

ḟj(w)
2

fj(w)
ϕ(

y − w

hjnj
)
1

hjnj
dwdy,

where the inequality follows because y2 ≤ 2(y − w)2 + 2w2. The first term in

the latter expression equals E{(1+ 2ε2ji)ḟj(εji)2/fj(εji)2} = O(1), and the second

term equals 2h2jnjE{ḟj(εji)2/fj(εji)2}
R∞
−∞ v2ϕ(v)dv = o(1). ¥

Lemma 3: Let {Zi}ni=1 be i.i.d. real random variables with a distribution func-

tion F (·) that admits a density function f(·) such that E{(1+Z2i )ḟ(Zi)
2/f(Zi)

2} <

∞. If {dni}ni=1, {eni}ni=1 are constants such that max1≤i≤n d2ni = o(1),
Pn

i=1 d
2
ni =
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O(1),max1≤i≤n(eni−1)2 = o(1) and
Pn

i=1(eni−1)2 = O(1), then the n−dimensional

product measure induced by {dn1 + en1Z1, ..., dnn + ennZn} is contiguous to the

n−dimensional product measure induced by {Z1, ..., Zn}.

Proof: First assume that E{(1 + Z2i )ḟ(Zi)
2/f(Zi)

2} > 0 and
Pn

i=1(dni, eni −

1)0(dni, eni − 1)→ B, where B is a positive definite (p.d.) matrix. Define Wni :=

f{(Zi− dni)/eni}/{enif(Zi)}, Wν := 2
Pn

i=1(W
1/2
ni − 1) and s(x) := f(x)1/2; then,

reasoning as in Lemma VI.2.1.a of Hájek and Sidák (1967), and using a first-order

Taylor expansion of r(h1, h2) := s{(x − h1)/h2}/h1/22 at the point (0, 1)0, for a

fixed x, it follows that E(W 1/2
ni − 1) = −12

R
[s{(x − dni)/eni}/e1/2ni − s(x)]2dx =

−1
2
[d2ni

R
ṡ(x)2dx + (eni−1)2

R
{s(x)/2+xṡ(x)}2dx + 2dni(eni−1)

R
ṡ(x){s(x)/2+

xṡ(x)}dx] + o(1); hence,

E(Wν) −→ −Tr(I01B)/4, (12)

where I01 := E{(ḟ(Zi)/f(Zi), 1+Ziḟ(Zi)/f(Zi))
0(ḟ(Zi)/f(Zi), 1+Ziḟ(Zi)/f(Zi))

0}

and Tr(·) stands for the trace operator. On the other hand, if we define Tni :=

dniṡ(Zi)/s(Zi) + (eni− 1){1/2 +Ziṡ(Zi)/s(Zi)} and Tν := −2
Pn

i=1 Tni, using the

central limit theorem in Hájek and Sidák (1967, p. 153), it follows that

Tν
d−→ N(0,Tr(I01B)); (13)

and with a similar reasoning to that used in Lemma VI.2.1.b of Hájek and Sidák

(1967) it follows that Var(Wν − Tν) ≤ 4
Pn

i=1

R
[s{(x − dni)/eni}/e1/2ni − s(x) +

dniṡ(x) + (eni− 1){s(x)/2 + xṡ(x)}]2dx; hence, using a first-order Taylor expan-

sion as before, we derive that

Var(Wν − Tν) = o(1). (14)

From (12), (13) and (14), it follows that Wν
d−→N(−Tr(I01B)/4,Tr(I01B)); this

implies, by LeCam’s second lemma, that {Z1, ..., Zn} and {dn1 + en1Z1, ..., dnn +

ennZn} are contiguous. Finally, using the same argument as in Hájek and Sidák
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(1967, p. 219), it readily follows that the assumptions E{(1+Z2i )ḟ(Zi)
2/f(Zi)

2} >

0 and
Pn

i=1(dni, eni − 1)0(dni, eni − 1) → B p.d., can be replaced by E{(1 +

Z2i )ḟ(Zi)
2/f(Zi)

2} <∞ and
Pn

i=1 d
2
ni = O(1),

Pn
i=1(eni − 1)2 = O(1). ¥

Lemma 4: If assumption 2 holds, then max1≤i≤nj |Mlj(Xji)| = op(n
1/2
j ).

Proof: Let η > 0 be arbitrary, then

P ( max
1≤i≤nj

|Mlj(Xji)| > ηn
1/2
j ) ≤

njX
i=1

P (|Mlj(Xji)| > ηn
1/2
j )

≤ njE
h³ |Mlj(Xji)|

ηn
1/2
j

´2
I{|Mlj(Xji)| > ηn

1/2
j }

i
=

1

η2
E
£
Mlj(Xji)

2I{Mlj(Xji)
2 > η2nj}

¤
.

The last term is o(1) because E[Mlj(Xji)
2] <∞ by assumption 2. ¥

Proof of Proposition 4: DenoteGj(y) := ḟj(y)/fj(y) and define eqj(y), efj(y),ėf j(y) and eGj(y) in the same way as bqj(y), bfj(y), ḃf j(y) and bGj(y), but replacing

residuals bεji by errors εji. We first prove thatZ ∞

−∞
keqj(y)− qj(y)k2 fj(y)dy = op(1). (15)

Observe that keqj(y)− qj(y)k2 = (1 + y2){ eGj(y) − Gj(y)}2. Let f j(y), ḟ j(y) be

as in Lemma 2; then { eGj(y) − Gj(y)}2 ≤ 3{ eGj(y) − eGj(y)f j(y)
1/2/fj(y)

1/2}2

+ 3{ eGj(y)f j(y)
1/2/fj(y)

1/2 − ḟ j(y)/[fj(y)f j(y)]
1/2}2 + 3{ḟ j(y)/[fj(y)f j(y)]1/2 −

Gj(y)}2. Therefore, if Ajnj denotes the event {y ∈ R : |y| ≤ ajnj ,
efj(y) ≥ bjnj ,¯̄̄ėf j(y)¯̄̄ ≤ cjnj

efj(y)}, R∞
−∞ keqj(y)− qj(y)k2 fj(y)dy ≤

3
R∞
−∞(1 + y2) eGj(y)

2{fj(y)1/2 − f j(y)
1/2}2dy+

3
R
Ajnj

(1 + y2){ eGj(y)− ḟ j(y)/f j(y)}2f j(y)dy+

3
R
AC
jnj

(1 + y2){ eGj(y)− ḟ j(y)/f j(y)}2f j(y)dy+

3
R∞
−∞(1 + y2){ḟ j(y)/f j(y)1/2 − ḟj(y)/fj(y)

1/2}2dy

≡ 3{(I) + (II) + (III) + (IV )}, say.
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To prove that (I) is op(1) note that, with our notation, we can rewrite inequality

(6.22) in Bickel (1982) as follows:

{fj(y)1/2 − f j(y)
1/2}2 ≤

h2jnj
4

Z 1

0

Z ∞

−∞

z2ḟj(y − λhjnjz)
2

fj(y − λhjnjz)
ϕ(z)dzdλ.

Hence, as eGj(y)
2 ≤ c2jnj ,

(I) ≤
(cjnjhjnj)

2

4

Z ∞

−∞
(1 + y2)

Z 1

0

Z ∞

−∞

z2ḟj(y − λhjnjz)
2

fj(y − λhjnjz)
ϕ(z)dzdλdy =

(cjnjhjnj)
2

4

Z ∞

−∞

ḟj(w)
2

fj(w)

Z 1

0

Z ∞

−∞
(1 + y2)(

y − w

λhjnj
)2ϕ(

y − w

λhjnj
)
1

λhjnj
dydλdw.

Now, with the change of variable y = w + vλhjnj in the integral with respect to

y, and since 1 + (w + vλhjnj)
2 ≤ 1 + 2w2 + 2v2λ2h2jnj , it also follows that

(I) ≤
(cjnjhjnj)

2

4

(Z ∞

−∞

ḟj(w)
2

fj(w)
(1 + 2w2)dw

Z 1

0

dλ
Z ∞

−∞
v2ϕ(v)dv+

2h2jnj

Z ∞

−∞

ḟj(w)
2

fj(w)
dw
Z 1

0

λ2dλ
Z ∞

−∞
v4ϕ(v)dv

)
= o(1){O(1) + o(1)O(1)} = o(1).

As (II) is non-negative, to prove that (II) is op(1) it suffices to prove that E(II) =

o(1). Note that if y ∈ Ajnj then eGj(y)− ḟ j(y)/f j(y) = eGj(y){1− efj(y)/f j(y)}+
{ėf j(y)− ḟ j(y)}/f j(y); hence, as f j(y) is non-random,

E(II) ≤ 2c2jnj
Z
Ajnj

(1 + y2)E[{f j(y)− efj(y)}2]/f j(y)dy+
2

Z
Ajnj

(1 + y2)E[{ėf j(y)− ḟ j(y)}2]/f j(y)dy ≤

2
1

njhjnj
(c2jnjκ0 +

κ1
h2jnj

)

Z ∞

−∞
(1 + y2)I(y ∈ Ajnj)dy,

where the last inequality follows because E[{f j(y) − efj(y)}2] = Var{ efj(y)} ≤
E[ϕ{(y − εij)/hjnj}2]/(njh2jnj) ≤ κ0f j(y)/(njhjnj), for κ0 := supx∈R ϕ(x), and

similarly E[{ėf j(y)− ḟ j(y)}2] ≤ κ1f j(y)/(njh
3
jnj
), for κ1 := supx∈R ϕ̇(x)

2/ϕ(x). If
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y ∈ Ajnj , then |y| ≤ ajnj ; thus, the integral in the latter expression is bounded byR ajnj
−ajnj (1 + y2)dy, and hence

E(II) ≤ 4 1

njhjnj
(c2jnjκ0 +

κ1
h2jnj

)(ajnj +
a3jnj
3
) = o(1).

To prove that (III) is op(1) it suffices to prove that E(III) = o(1). Note that

E(III) =

Z ∞

−∞
(1 + y2)ḟ j(y)

2/f j(y)P (y ∈ AC
jnj
)dy.

Under our assumptions, for fixed y it follows readily that (1 + y2)ḟ j(y)
2/f j(y)→

(1+ y2)ḟj(y)
2/fj(y). Moreover, efj(y) p→ fj(y),

ėf j(y) p→ ḟj(y); hence, P (y ∈ AC
jnj
)

≤ P{ efj(y) < bjnj} + I(|y| > ajnj) + P{
¯̄̄ėf j(y)¯̄̄ > cjnj

efj(y)} = o(1). Additionally,

(11) ensures that the uniform integrability results apply, and hence E(III) = o(1).

Finally note that, for fixed y, (1+ y2){ḟ j(y)/f j(y)1/2− ḟj(y)/fj(y)
1/2}2 → 0; now

(11) and assumption 1 ensure that the uniform integrability results apply and

hence (IV ) = o(1). Thus, the proof of (15) is now complete.

To prove that (3) follows from (15), we use the contiguity result derived

in Lemma 3. Define now djnji(u) := {µj(Xji, θj)− µj(Xji, u)}/σj(Xji, u) and

ejnji(u) := σj(Xji, θj)/σj(Xji, u). From assumption 2 and Lemma 4 we obtain

sup
u
max
1≤i≤nj

d2jnji(u) ≤ (M
2α1j/S2j ) max

1≤i≤nj
M1j(Xji)

2/n
α1j
j = O(1)op(n

1−α1j
j ) = op(1),

where, as above, supu denotes the supremum for ku− θjk ≤ Mn
−1/2
j , for a fixed

M . Similarly,

sup
u
max
1≤i≤nj

{ejnji(u)− 1}2 ≤ (M2α2j/S2j ) max
1≤i≤nj

M2j(Xji)
2/n

α2j
j = op(1).

On the other hand,

sup
u

njX
i=1

d2jnji(u) ≤ {n
−1
j

njX
i=1

M1j(Xji)
2}M2α1jn

1−α1j
j /S2j = Op(1)O(1) = Op(1),

and similarly supu
Pnj

i=1{ejnji(u) − 1}2 = Op(1). Then, taking into account the

root-nj-consistency of bθj, the result derived in Lemma 3 and the relationship
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between εjnj and bεjnj , using a similar argument to that in Bickel (1982, p. 657),
it follows that the measure induced by {bεj1, ...,bεjnj} is contiguous to the measure
induced by {εj1, ..., εjnj}; therefore, (3) follows from (15). ¥

Proof of Proposition 5: Let eqj(y), efj(y), ėf j(y) and eGj(y) be as defined in

Proposition 4. Reasoning as in the proof of Proposition 4, we only have to show:

sup
x∈R

¯̄̄¯̄̄
n
−1/2
j

njX
i=1

[I(εji ≥ x){eqj(εji)−qj(εji)}−Z ∞

x

{eqj(y)−qj(y)}fj(y)dy]¯̄̄¯̄̄ = op(1).

To keep the proof readable we only present the line of argument for the second

component of eqj(y)− qj(y), that isėf j(y)efj(y) − ḟj(y)

fj(y)
=
ėf j(y)fj(y)− ḟj(y) efj(y)

fj(y)2
(1 + rjnj(y)),

where rjnj(y) = (fj(y) − efj(y))/ efj(y) and we assume in the following |y| ≤ ajnj ,efj(y) ≥ bjnj , |
ėf j(y)| ≤ cjnj

efj(y) (i.e. y ∈ Ajnj with the definition from the proof

of Proposition 4, where P (y ∈ AC
jnj
) = o(1) was shown). For the remainder we

have uniformly in y ∈ R,

|rjnj(y)| = O
³h2jnj
bjnj

´
+O

³ (log h−1jnj)
1/2

(njhjnj)
1/2bjnj

´
= o(1) (16)

(see e.g. Silverman, 1978, for uniform rates of kernel density estimators). Thus,

in the following we concentrate on proving supx∈R |Vjnj(x)| = op(1), where

Vjnj(x) = n
−1/2
j

njX
i=1

h
I(εji ≥ x)

ėf j(εji)fj(εji)− ḟj(εji) efj(εji)
f2j (εji)

I( efj(εji) ≥ bjnj)

−
Z ∞

x

ėf j(y)fj(y)− ḟj(y) efj(y)
f2j (y)

I( efj(y) ≥ bjnj)fj(y)dy
i

=
1

nj
√
nj

njX
i=1

njX
k=1

h
I(εji ≥ x)

³ 1

h2jnj
ϕ̇(

εji − εjk
hjnj

)

− 1

hjnj
ϕ(

εji − εjk
hjnj

)
ḟj(εji)

fj(εji)

´ 1

fj(εji)
I( efj(εji) ≥ bjnj)

−
Z

I(y ≥ x)
³ 1

h2jnj
ϕ̇(

y − εjk
hjnj

)− 1

hjnj
ϕ(

y − εjk
hjnj

)
ḟj(y)

fj(y)

´
×I( efj(y) ≥ bjnj)dy

i
.
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With some straightforward calculations one can show E{Vjnj(x)} = o(1) and

Var(Vjnj(x)) = o(1) for each fixed x. However, to derive the result uniformly in

x ∈ R we will use empirical process and U-process theory.

The indicators I( efj ≥ bjnj) assure the existence of expectations. Note that

fj ≥ efj − | efj − fj|. The term in absolute value is uniformly almost surely of

order o(bjnj) (compare (16)). Therefore on the event { efj ≥ bjnj} we can assume

fj ≥ bjnj/2 and obtain, e. g., for the expectation of the term appearing in the

above double sum for the special case i = k,

1
√
nj
E
h¯̄̄³ϕ̇(0)

h2jnj
− ϕ(0)

hjnj

ḟj(εji)

fj(εji)

´ 1

fj(εji)
I( efj(εji) ≥ bjnj)

¯̄̄i
≤ O(

1

n
1/2
j h2jnjbjnj

) = o(1).

For ease of notation in the following we omit the indicators and implicitly assume

that we only consider sets where efj ≥ bjnj and fj ≥ bjnj/2 is valid. We concen-

trate our considerations on the following (symmetrized) U-process (compare the

definition of Vjnj(x)),

1

2h2jnj
Ujnj(gx,hjnj ) =

1

2h2jnj

1

nj
√
nj

njX
i=1

njX
k=1
k 6=i

gx,hjnj (εji, εjk),

where

gx,h(u, v) = I(u ≥ x)
³
ϕ̇(

u− v

h
)− hϕ(

u− v

h
)
ḟj(u)

fj(u)

´ 1

fj(u)

−
Z

I(y ≥ x)
³
ϕ̇(

y − v

h
)− hϕ(

y − v

h
)
ḟj(y)

fj(y)

´
dy

+ I(v ≥ x)
³
ϕ̇(

v − u

h
)− hϕ(

v − u

h
)
ḟj(v)

fj(v)

´ 1

fj(v)

−
Z

I(y ≥ x)
³
ϕ̇(

y − u

h
)− hϕ(

y − u

h
)
ḟj(y)

fj(y)

´
dy.

We denote by G the function class {gx,h|x ∈ R, h ∈ (0, 1)} and by G̃ the class of
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conditional expectations {g̃x,h|x ∈ R, h ∈ (0, 1)}, where

g̃x,h(v) = E[gx,h(εji, v)]

= I(v ≥ x)

Z ³
ϕ̇(

v − u

h
)− hϕ(

v − u

h
)
ḟj(v)

fj(v)

´ 1

fj(v)
fj(u)du

−
Z Z

I(y ≥ x)
³
ϕ̇(

y − u

h
)− hϕ(

y − u

h
)
ḟj(y)

fj(y)

´
dyfj(u)du.

Hoeffding’s decomposition gives Ujnj(gx,h) = Ujnj(ḡx,h) + 2n
−1/2
j

Pnj
i=1 g̃x,h(εji),

where ḡx,h(u, v) = gx,h(u, v) − g̃x,h(u) − g̃x,h(v) and Ujnj(ḡx,h) is a degenerate U-

process. With some tedious calculations using Lemma 22(ii), Corollary 17 about

sums of Euclidean classes, a similar result on products of bounded Euclidean

classes, and Corollary 21 of Nolan and Pollard (1987) it can be shown that the

function classes G and G̃ are Euclidean (see Definition 8 in Nolan and Pollard,

1987, p. 789). Then it is easy to see that the assumptions of Theorem 5 in Nolan

and Pollard (1988, p. 1294) are satisfied and from the proof of this Theorem it

can be concluded that supx∈R,h∈(0,1) |Ujnj(ḡx,h)| = Op(n
−1/2
j ) (compare the proof

of Lemma 5.3.a, Neumeyer and Dette (2003) for a similar argument). Therefore

we obtain
1

2h2jnj
sup
x∈R

|Ujnj(ḡx,hjnj )| = Op(n
−1/2
j h−2jnj) = op(1)

and in the following we only have to consider the empirical process part of Hoeff-

ding’s decomposition, that is

n
−1/2
j h−2jnj

njX
i=1

g̃x,hjnj (εji) = h−2jnj
√
nj
³
Pjnj(g̃x,hjnj )− P (g̃x,hjnj )

´
,

where P and Pjnj denote the measure and empirical measure of εji, respectively.

The rest of our proof uses ideas from Theorem 37 in Pollard (1984, p. 34). We

cannot apply this theorem directly because our function class G̃ has no constant

envelope. For the complete line of arguments we refer to the proof of Lemma

5.3.a in Neumeyer and Dette (2003). Note that the function class G̃ is Euclidean.

We define the following sequences of real numbers, αjnj = n
−1/2
j h

−2−2dj
jnj

bjnj and
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δ2jnj = h
4+2dj
jnj

b−1jnj (using dj from assumption 7) such that

P (g̃2x,hjnj
)

≤ E
h³

I(εji ≥ x)

Z ³
ϕ̇(

εji − u

hjnj
)− hjnjϕ(

εji − u

hjnj
)
ḟj(εji)

fj(εji)

´ 1

fj(εji)
fj(u)du

´2i
= h4jnj

Z ∞

x

³Z 1

h2jnj
ϕ̇(

y − u

hjnj
)fj(u)du−

Z
1

hjnj
ϕ(

y − u

hjnj
)fj(u)du

ḟj(y)

fj(y)

´2 dy
fj(y)

≤ h4jnj

Z ∞

−∞

³Z
ḟj(y − hjnjz)ϕ(z)dz −

Z
fj(y − hjnjz)ϕ(z)dz

ḟj(y)

fj(y)

´2 dy
fj(y)

= o(δ2jnj)

uniformly in x ∈ R (using our implicit assumption fj ≥ bjnj/2). Additionally, we

have lognj = o(njδ
2
jnj

α2jnj) and njδ
2
jnj

αjnj →∞. Using the argument in Lemma

5.3.a, Neumeyer and Dette (2003), we obtain

sup
x∈R

|Pjnj(g̃x,hjnj )− P (g̃x,hjnj )| = op(δ
2
jnj

αjnj)

and conclude the assertion from h−2jnj
√
njo(δ

2
jnj

αjnj) = o(1). ¥

Proof of Theorem 3: First we prove that under H0 cWjnj(·) :=cW jnj{F−1j (·)}

converges weakly to a standard Brownian motion. Let D[0, b] (b > 0) denote

the space of cadlag functions endowed with the Skorohod metric, and define the

mapping Γj(·) from D[0, 1] to D[0, 1] as follows:

Γj{γ(·)}(t) :=
Z t

0

qj{F−1j (s)}0Cj{F−1j (s)}−1[
Z 1

s

qj{(F−1j (r)}dγ(r)]ds.

It is easy to check that Γj(·) is a linear mapping. Note that qj{F−1j (·)} is the deriv-

ative of Qj(·) := (Q1j(·), Q2j(·), Q3j(·))0, where Q1j(t) := t, Q2j(t) := fj{F−1j (t)},

Q3j(t) := F−1j (t)fj{F−1j (t)}. With this notation, observe that

Γj{Qlj(·)} = Qlj(·), (17)

for l = 1, 2, 3; this follows because Cj{F−1j (s)}−1Cj{F−1j (s)} = I3 implies that

Cj{F−1j (s)}−1
R 1
s
Q̇j(r)dQ1j(r) = (1, 0, 0)

0; hence Γj{Q1j(·)}(t) =
R t
0
Q̇j(s)(1, 0, 0)

0ds
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= Q1j(t), and a similar reasoning applies to Q2j(·), Q3j(·). Using now the relation-

ship bVjnj(·) = n1/2[ bFjnj{F−1j (·)}−Q1j(·)], the linearity of Γj(·) and (17), routine

calculations yield that, under H0, bVjnj(·) − Γj{bVjnj(·)} = cWjnj(·). Using (2) it

also follows from there that

cWjnj(·) = Vjnj(·)− Γj{Vjnj(·)}+ op(1),

because Γj{gj(·)0ξjnj} = gj(·)0ξjnj by (17). Thus, as Vjnj(·) converges weakly to

a standard Brownian bridge V (·), cWjnj(·) converges weakly to V (·) − Γj{V (·)},

which is a standard Brownian motion in [0, 1] (see Khmaladze, 1981).

Now definefWjnj(·) :=fW jnj{F−1j (·)}. To prove thatfWjnj(·) =cWjnj(·)+op(1),

we follow a similar approach to that used in Theorem 4 of Bai (2003), though now

some additional terms turn up because the estimated functions bfj(·) also appear
in the integrals to be computed. Observe that for every t0 ∈ (0, 1),

supt∈[0,t0]

¯̄̄fWjnj(t)−cWjnj(t)
¯̄̄
≤

supx∈(−∞,F−1j (t0))
n
1/2
j

¯̄̄R x
−∞ bq3−j(y)0 bC3−j(y)−1{R∞y bq3−j(z)d bFjnj(z)}

{ bf3−j(y)− f3−j(y)}dy
¯̄̄
+

supx∈(−∞,F−1j (t0))
n
1/2
j

¯̄̄R x
−∞ bq3−j(y)0{ bC3−j(y)−1 − C3−j(y)

−1}

{
R∞
y
bq3−j(z)d bFjnj(z)}f3−j(y)dy

¯̄̄
+

supx∈(−∞,F−1j (t0))
n
1/2
j

¯̄̄R x
−∞[bq3−j(y)0C3−j(y)

−1{
R∞
y
bq3−j(z)d bFjnj(z)}−

q3−j(y)
0C3−j(y)

−1{
R∞
y

q3−j(z)d bFjnj(z)}]f3−j(y)dy
¯̄̄

≡ (I) + (II) + (III), say,

where we define Cj(y) :=
R∞
y
bqj(w)bqj(w)0fj(w)dw. We prove below that (I),

(II) and (III) are all op(1). Hence, under H0, fWjnj(·) also converges weakly to

a Brownian motion W (1)(·) in the space D[0, t0]. Thus, K
(j)

n1,n2,x0 =
bFjnj(x0)

−1/2

supt∈[0,Fj(x0)]

¯̄̄fWjnj(t)
¯̄̄
converges in distribution to Fj(x0)

−1/2 supt∈[0,Fj(x0)]
¯̄
W (1)(t)

¯̄
= supt∈[0,1] |W (t)|, where W (t) := Fj(x0)

−1/2W (1){Fj(x0)t} is a Brownian motion

in the space D[0, 1]. On the other hand, reasoning as in Theorem 1, it follows
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that C
(j)

n1,n2,x0
= bFjnj(x0)

−2 R I(x ≤ x0){fW jnj(x)}2dFj(x) + op(1); thus C
(j)

n1,n2,x0

converges in distribution to Fj(x0)
−2 R Fj(x0)

0
{W (1)(t)}2dt =

R 1
0
{W (t)}2dt.

Therefore, to derive the result under H0 it only remains to prove that (I),

(II) and (III) are op(1). First, we prove that (III) is op(1). To simplify no-

tation, hereafter we drop the argument s and denote bqj ≡ bqj{F−1j (s)}, Cj ≡

Cj{F−1j (s)}, qj ≡ qj{F−1j (s)}, Cj ≡ Cj{F−1j (s)}. Note that the first column

in Cj is
R 1
s
bqj{F−1j (r)}dr; hence C−1j Cj = I3 implies that C

−1
j

R 1
s
bqj{F−1j (r)}dr

= (1, 0, 0)0. Thus,
R t
0
bq0jC−1j [R 1s bqj{F−1j (r)}dr]ds = t; on the other hand, (17) for

l = 1 can be rewritten as
R t
0
q0jC

−1
j [
R 1
s
qj{F−1j (r)}dr]ds = t. These two equalities

imply that (III) can also be expressed as

supt∈[0,t0)

¯̄̄R t
0

hbq03−jC−13−j R 1s bq3−j{F−1j (r)}dbVjnj(r)−
q03−jC

−1
3−j
R 1
s
q3−j{F−1j (r)}dbVjnj(r)ids¯̄̄ ≤

supt∈[0,t0)
R t
0

¯̄̄bq03−jC−13−j R 1s (bq3−j{F−1j (r)}− q3−j{F−1j (r)})dbVjnj(r)¯̄̄ds+
supt∈[0,t0)

R t
0

¯̄̄bq03−j(C−13−j − C−13−j)
R 1
s
q3−j{F−1j (r)}dbVjnj(r)¯̄̄ds+

supt∈[0,t0)
R t
0

¯̄̄
(bq3−j − q3−j)

0C−13−j
R 1
s
q3−j{F−1j (r)}dbVjnj(r)¯̄̄ds.

(18)

Now observe that, for all s in (0, t0), from (2) we derive that¯̄̄bq3−jC−13−j R 1s (bq3−j{F−1j (r)}− q3−j{F−1j (r)})dbVjnj(r)¯̄̄ ≤ kbq3−jk×°°C3−j{F−1j (t0)}−1
°°³°°°R 1s [bq3−j{F−1j (r)}− q3−j{F−1j (r)}]dVjnj(r)

°°°+
[
R 1
s

°°bqj{F−1j (r)}− qj{F−1j (r)}
°°2 dr]1/2

[{
R 1
s
kġj(r)k2 dr}1/2Op(1) + op(1)]

´
= kbq3−jkOp(1)op(1),

(19)

where the last equality follows from (4) and (3). Similarly,¯̄̄bq3−j(C−13−j − C−13−j)
R 1
s
q3−j{F−1j (r)}dbVjnj(r)¯̄̄ ≤

kbq3−jk°°°C−13−j − C−13−j

°°°°°°R 1s q3−j{F−1j (r)}dbVjnj(r)°°° ≤
kbq3−jk°°°C−13−j − C−13−j

°°° [°°°R 1s q3−j{F−1j (r)}dVjnj(r)
°°°+Op(1)]

= kbq3−jk op(1)Op(1),

(20)

where the second inequality follows using (2) and reasoning as in (19), and the last

equality follows because by the functional central limit theorem
R 1
s
q3−j{F−1j (r)}
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dVjnj(r) = Op(1) and, using the same argument as in Bai (2003, p. 548), it follows

that
°°°C−13−j − C−13−j

°°° = op(1), uniformly in s. Finally,

¯̄̄
(bq3−j − q3−j)

0C−13−j
R 1
s
q3−j{F−1j (r)}dbVjnj(r)¯̄̄ ≤

kbq3−j − q3−jk
°°C3−j{F−1j (t0)}−1

°°°°°R 1s q3−j{F−1j (r)}dbVjnj(r)°°°
= kbq3−j − q3−jkOp(1)Op(1).

(21)

Thus, from (18), (19), (20) and (21), and using (3) it follows that

(III) ≤ op(1)(

Z 1

0

kbq3−jk2 ds)1/2 +Op(1)(

Z 1

0

kbq3−j − q3−jk2 ds)1/2 = op(1).

To analyze (I) and (II) observe that, under our assumptions, using the results in

Silverman (1978) and Lemma 3 in the same way as in Proposition 4, it follows that

supy∈R

¯̄̄ bfj(y)− fj(y)
¯̄̄
= op(1), which implies that supy∈(−∞,x0]

¯̄̄ bCj(y)
−1 − Cj(y)

−1
¯̄̄

= op(1). Thus, using the same arguments as above it also follows that (I) = op(1)

and (II) = op(1). This completes the proof of part a.

Under H1, note that the probability limit of n
−1/2
j

fW jnj(x) is

Ξ(x) := Fj(x)−
Z x

−∞
q3−j(y)

0C3−j(y)
−1{
Z ∞

y

q3−j(z)fj(z)dz}f3−j(y)dy.

Assume that Ξ(x) = 0 for every x ∈ R. Then Ξ̇(x) = 0, i.e.,

fj(x)− q3−j(x)
0Υ(x)f3−j(x) = 0, (22)

where Υ(x) := C3−j(x)
−1{
R∞
x

q3−j(z)fj(z)dz}; but using the rules for matrix

derivatives it follows that Υ̇(x) = −C3−j(x)−1Ċ3−j(x)C3−j(x)−1{
R∞
x

q3−j(z)fj(z)dz}

− C3−j(x)
−1q3−j(x)fj(x) = −C3−j(x)−1q3−j(x)Ξ̇(x) = 0 and hence Υ(·) is con-

stant, say (λ1, λ2, λ3)0. Therefore, (22) implies that fj(x) = (λ1 + λ3)f3−j(x) +

λ2ḟ3−j(x) + λ3xḟ3−j(x). Now, if we integrate the two terms in this equation,

and also the two terms premultiplied by x and by x2, taking into account that

E(εji) = 0, E(ε2ji) = 1 and E(ε3ji) < ∞, we derive three equations which imply

that λ1 = 1, λ2 = λ3 = 0. This proves that if Ξ(x) = 0 for every x ∈ R, then
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H0 holds. Hence, under H1 there exists x∗ such that Ξ(x∗) 6= 0; thus, if x0 ≥ x∗,

n
−1/2
j K

(j)

n1,n2,x0 converges in probability to Fj(x0)
−1/2 supx∈(−∞,x0] |Ξ(x)| > 0 and

n
−1/2
j C

(j)

n1,n2,x0
converges in probability to Fj(x0)

−2 R x0
−∞ Ξ(x)2dFj(x) > 0, and part

b follows from there. ¥

Proof of the Corollary: LetW(·) := (W1(·),W2(·))́ be a Gaussian process

on D[0, 1] ×D[0, 1] with zero mean vector and Cov{W(s),W(t)} = min(s, t)I2,

where I2 denotes the identity matrix. As cW1n1(·) and cW2n2(·) are constructed

with independent random samples, it follows from the proof of Theorem 3 that

under H0 cWn(·) := (cW1n1(·),cW2n2(·))́ converges weakly toW(·). Thus, the result

in part a follows because supt∈[0,1]
°°°cWn(t)− fWn(t)

°°° = op(1) where fWn(·) :=

(fW1n1(·),fW2n2(·))́, and the result in part b follows from part b of Theorem 3. ¥
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TABLE 1

Proportion of Rejections of H0 in Experiment 1, α = 0.05bCn1,n2 Cn1,n2,x0 C
(IN)

n1,n2,x0

δ h(1) h(2) h(3) h(1) h(2) h(3)

n1 = n2 = 50

0

1

2

3

4

5

0.048 0.057 0.059

0.073 0.080 0.087

0.077 0.088 0.093

0.082 0.088 0.094

0.085 0.097 0.103

0.107 0.115 0.118

0.012 0.132 0.476

0.011 0.138 0.538

0.013 0.152 0.684

0.017 0.184 0.792

0.038 0.281 0.992

0.047 0.356 0.998

0.128

0.217

0.295

0.365

0.411

0.430

n1 = n2 = 150

0

1

2

3

4

5

0.047 0.054 0.059

0.117 0.121 0.127

0.183 0.185 0.194

0.219 0.226 0.233

0.255 0.260 0.268

0.323 0.331 0.341

0.021 0.103 0.385

0.024 0.106 0.437

0.023 0.136 0.823

0.029 0.148 0.938

0.074 0.268 0.991

0.121 0.523 1.000

0.101

0.353

0.566

0.663

0.724

0.755

n1 = n2 = 250

0

1

2

3

4

5

0.052 0.053 0.056

0.136 0.138 0.138

0.259 0.262 0.268

0.336 0.341 0.346

0.423 0.429 0.434

0.463 0.466 0.470

0.027 0.086 0.243

0.032 0.361 0.644

0.038 0.568 0.975

0.082 0.753 0.994

0.117 0.847 1.000

0.179 0.885 1.000

0.089

0.473

0.706

0.834

0.895

0.929
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TABLE 2

Proportion of Rejections of H0 in Experiment 2, α = 0.05bCn1,n2 Cn1,n2,x0 C
(IN)

n1,n2,x0

δ h(1) h(2) h(3) h(1) h(2) h(3)

n1 = n2 = 50

0

1/9

1/7

1/5

1/4

1/3

0.051 0.049 0.056

0.058 0.061 0.059

0.081 0.095 0.090

0.092 0.115 0.122

0.160 0.189 0.201

0.253 0.291 0.308

0.105 0.035 0.016

0.168 0.081 0.069

0.163 0.098 0.074

0.221 0.152 0.130

0.287 0.230 0.219

0.380 0.323 0.317

0.034

0.099

0.112

0.176

0.250

0.343

n1 = n2 = 150

0

1/9

1/7

1/5

1/4

1/3

0.045 0.047 0.047

0.121 0.123 0.120

0.152 0.161 0.162

0.296 0.306 0.305

0.485 0.505 0.505

0.724 0.735 0.737

0.103 0.039 0.035

0.275 0.219 0.245

0.331 0.292 0.334

0.447 0.429 0.502

0.577 0.589 0.683

0.695 0.745 0.824

0.036

0.222

0.303

0.470

0.614

0.744

n1 = n2 = 250

0

1/9

1/7

1/5

1/4

1/3

0.054 0.051 0.053

0.153 0.169 0.173

0.270 0.278 0.273

0.472 0.490 0.490

0.690 0.702 0.702

0.913 0.920 0.922

0.106 0.052 0.085

0.360 0.330 0.460

0.411 0.420 0.537

0.586 0.610 0.785

0.747 0.800 0.896

0.874 0.920 0.978

0.048

0.312

0.440

0.625

0.788

0.917
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