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Abstract

In a multivariate nonparametric regression problem with �xed, deterministic design asymptotic,

uniform con�dence bands for the regression function are constructed. The construction of the bands

is based on the asymptotic distribution of the maximal deviation between a suitable nonparametric

estimator and the true regression function which is derived by multivariate strong approximation

methods and a limit theorem for the supremum of a stationary Gaussian �eld over an increasing

system of sets. The results are derived for a general class of estimators which includes local polynomial

estimators as a special case. The �nite sample properties of the proposed asymptotic bands are

investigated by means of a small simulation study.
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1 Introduction

Within the last decades nonparametric regression has received a great deal of attention as a powerful tool

for data analysis. Various di�erent models and methods have been discussed and thoroughly investigated.

Nonparametric curve estimation provides many useful applications, especially for graphical visualization

but it can also serve as basis for the development of means of statistical inference such as goodness of �t
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tests or the construction of con�dence sets for the unknown regression function. While interval estimates

can be used for its point-wise analysis, simultaneous con�dence bands have to be employed in order to

draw conclusions regarding global features of the curve under consideration and thus shed more light into

the connection between dependent and independent variables.

In this paper we develop new asymptotic uniform con�dence sets in a nonparametric regression setting

with a deterministic and multivariate predictor. To be precise we consider the multivariate regression

model

Yi = f(ti) + εi, i := (i1, . . . , id) ∈ {1, . . . , n}d, (1)

where i = (i1, . . . , id) is a multi-index, the {ti := (ti1 , . . . , tid) ∈ Rd | 1 ≤ i1, . . . , id ≤ n} are determin-

istic design points in Rd, {ε(i1,...,id) | 1 ≤ i1, . . . , id ≤ n} is a �eld of centered, independent identically

distributed random variables with common variance σ2 and f is an unknown, smooth regression function.

The construction of con�dence sets requires a reliable estimate of the unknown object. Often kernel

smoothing techniques are applied in this context (cf., e.g., Wand and Jones (1995)). Alternative ap-

proaches, such as spline smoothing for instance, often show similar asymptotic behaviour in the sense

that corresponding estimators have approximately the same form, that is, linear in the observations and

with a kernel that is of convolution form and possibly variable with respect to the sample size n.

Given a suitable estimate, a well-established method to construct asymptotic uniform con�dence bands

is based on the original work of Bickel and Rosenblatt (1973b) who extended results of Smirnov (1950)

for a histogram estimate and constructed con�dence bands for a univariate density function of indepen-

dent identically distributed observations. Their method is based on the asymptotic distribution of the

supremum of a centered kernel density estimator and closely related to extreme value theory. Since this

seminal paper the idea has been elaborated, advanced and adopted to various situations. For exam-

ple Johnston (1982) constructed con�dence bands based on the Nadaraya-Watson and Yang estimator,

Härdle (1989) derived asymptotic uniform con�dence bands for M -smoothers. Eubank and Speckman

(1993), who considered deterministic, uniform design and local constant estimation, and Xia (1998),

who considered random design points under dependence and local linear estimation, employed an explicit

bias-correction. Bootstrap con�dence bands for nonparametric regression were proposed by Neumann and

Polzehl (1998) and Claeskens and van Keilegom (2003). Härdle and Song (2010) investigated asymptotic
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uniform con�dence bands for a quantile regression curve with a one-dimensional predictor. In the context

of density estimation Giné et al. (2004) derived asymptotic distributions of weighted suprema. Further,

con�dence bands were proposed in adaptive density estimation based on linear wavelet and kernel density

estimators (Giné and Nickl (2010)), density deconvolution (Bissantz et al. (2007)) or adaptive density

deconvolution (Lounici and Nickl (2011)). All these authors, if not otherwise indicated, employed under-

smoothing in order to cope with the bias. Also, in all the above listed references one-dimensional models

are considered and the results are not applicable in cases where the quantity of interest depends on a

multivariate predictor. On the other hand only a few results can be found in a multivariate setting which

attracted comparatively little attention so far. For instance, in the same year the well-known paper Bickel

and Rosenblatt (1973b) was released also a multivariate extension was published (Bickel and Rosenblatt

(1973a)) which received by far less attention. Rosenblatt (1976) studied maximal deviations of multi-

variate density estimates, Konakov and Piterbarg (1984) investigated the convergence of the distribution

of the maximal deviation for the Nadaraya-Watson estimate in a multivariate, random design regression

setting and Rio (1994) investigated local invariance principles in the context of density estimation. An

alternative approach was recently proposed by Hall and Horowitz (2013) who addressed the bias-di�culty

explicitly and constructed con�dence bands based on normal approximations and a bootstrap method

that is used to adjust the level α in the normal quantiles in such a way that a coverage of a desired value

of at least 1−α0 is attained at at least a predi�ned portion of values x ∈ R, where R ⊂ Rd. They discuss

both nonparametric density and regression estimation.

In this paper we construct asymptotic uniform con�dence bands for a regression function in a multivariate

setting for a general class of nonparametric estimators of the regression function. For the sake of a trans-

parent notation we focus on local polynomial estimators. However our approach is generally applicable

for several other estimators in use (see Theorem 3 and Remark 2 below).

Notations and de�nitions as well as assumptions, required for the asymptotic theory, can be found in

Section 2. For a clear exposition we examine in Section 3 the two-dimensional case, brie�y discuss the

properties of the estimator and state the main results. The general case of a d- dimensional predictor is

discussed in Section 4. The �nite sample properties of the proposed asymptotic bands are investigated in

Section 5 and detailed proofs for the two-dimensional case are given in Section 6 while the case d > 2 is

considered in Section 7. Our arguments heavily rely on results by Piterbarg (1996) who provided a limit
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theorem for the supremum

sup
t∈Tn
|X(t)|

of a stationary Gaussian �eld {X(t) | t ∈ Rd}, where {Tn ⊂ Rd}n∈N is an increasing system of sets such

that λd(Tn) → ∞ as n → ∞ and also on multivariate strong approximation methods provided by Rio

(1993).

2 General setup and assumptions

Let Ω := (0, 1)d and suppose that for two positive constants k ∈ N and a ∈ (0, 1) the function f : Ω→ R

from model (1) belongs to the Hölder class of functions Ck,a(Ω), i.e., for all multi-indices βββ = (β1, . . . , βd)

with |βββ| = β1 + . . . + βd ≤ k the derivatives Dβββf exists and ‖f‖Ck,a < ∞. Here we use the following

notation

Dβββf(x1, . . . , xd) =
∂|βββ|f

∂xβ11 . . . ∂xβdd
(x1, . . . , xd) (2)

and

‖f‖Ck,a = max
|βββ|≤k

sup
x∈Ω
|Dβββf(x)|+ max

|βββ|=k
sup

x,y∈Ω,x 6=y

|f(x)− f(y)|
‖x− y‖a

<∞, (3)

where ‖ · ‖ without a subscript denotes the Euclidean distance. Also, in what follows, more of the usual

multi-index notation will be used, such as

uααα := uα1
1 · . . . · u

αd
d and ααα! := α1! · . . . · αd! (4)

Further, with a slight abuse of notation, we shall denote the vector
(
t1−x1
h1

, . . . , td−xdhd

)T
by ti−x

h for the

sake of brevity.

Assumption 1. Assume that the following three conditions hold

(i) The kernel K has compact support: supp(K) ⊂ [−1, 1]d.
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(ii) There exist constants D,K1 > 0 and K2 <∞ such that

K1 · I[−D,D]d(u) ≤ K(u) ≤ K2 · I[−1,1]d(u).

(iii) All derivatives of K up to the order d exist and are continuous.

Assumption 2. Suppose that the design points {ti = (ti1 , . . . , tid) | i = (i1, . . . , id) ∈ {1, . . . , n}d} satisfy

ij
n+ 1

=

∫ tij

0
gj(z) dz =: Gj(tij ), j = 1, . . . , d,

for positive design densities gj , j = 1, . . . , d on [0, 1] (see also Sacks and Ylvisaker (1970)) that are bounded

away from zero and continuously di�erentiable with bounded derivatives up to order (d− 1) ∨ 1.

Remark 1. A further generalization of the design in the sense that Assumption 2 only holds approxi-

mately, such as proposed in Dette and Munk (1998), i.e.,

n
max
i=2

∣∣∣∣∫ tij

tij−1

gj(t) dt−
1

n

∣∣∣∣ = o

(
1

n log(n)

)
(5)

is also possible but will not be considered here. The additional factor of 1/ log(n) is needed in order to

compensate the additional factor in the convergence rate of the maximal deviation of f and f̂ . Under

the more general assumption (5) the rate in assertion (i) of Lemma 1 would change to o(1/ log(n))

and for the rate in the proof of Lemma 7, equation (13), we would obtain oP (1/
√

log(n)) instead of

OP ((h1 + h2) log(n)).

3 Bivariate nonparametric regression

3.1 Notation and auxiliary results

In the following we shall adapt the notation introduced in Tsybakov (2009), Chapter 1.6 to the two

dimensional setting. We shall also make use of some of the results stated therein and extend the proofs, if

necessary to the case where the design only meets Assumption 2, i.e., is not necessarily uniform. In order

to de�ne the estimator we need to �x some notation �rst. For j = 1, . . . , k let Uj : R2 → Rj+1 be de�ned
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as

Uj(u) :=
(u(j,0)

j!
,

u(j−1,1)

(j − 1)! · 1!
,

u(j−2,2)

(j − 2)! · 2!
, . . . ,

u(0,j)

j!

)

and let further U : R2 → R(k+1)(k+2)/2 be

U(u) := (1, U1(u), U2(u), . . . , Uk(u))T .

Moreover, for j = 1, . . . , k and h = (h1, h2) de�ne

θ(x) = (f(x),h1f (1)(x),h2f (2)(x), . . . ,hkf (k)(x))T ,

where

hjf (j) := (h(j,0) ·D(j,0)f,h(j−1,1) ·D(j−1,1)f,h(j−2,2) ·D(j−2,2)f, . . . ,h(0,j) ·D(0,j)f)

with the multi-index notation hααα and D(α1,α2) as de�ned in (4) and (2), respectively. Let K : R2 → R+
0 be

a kernel function as speci�ed in Assumption 1 below. Recall that, given the above notation, the quantity

θ̂(x) := argminθθθ∈R(k+1)(k+2)/2

n∑
i1,i2=1

[
Y(i1,i2) − θ(x)TU

(ti − x

h

)]2
K
(ti − x

h

)

is called local polynomial estimator of order k of θ(x) and that the statistic

f̂n(x) = UT (0)θ̂n(x)

is called local polynomial estimator of order k of f(x) (see Tsybakov (2009)). Introducing some more

notation we can rewrite the estimators θ̂n(x) and f̂n(x) in a perhaps more intuitive way. For x ∈ Ω let

an,x ∈ R(k+1)(k+2)/2 and Bn,x ∈ R(k+1)(k+2)/2×(k+1)(k+2)/2 be de�ned as

an,x :=
1

n2h1h2

n∑
i1,i2=1

Y(i1,i2)U
(ti − x

h

)
K
(ti − x

h

)
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and

Bn,x :=
1

n2h1h2

n∑
i1,i2=1

U
(ti − x

h

)
UT
(ti − x

h

)
K
(ti − x

h

)
. (6)

Now we can write

θ̂n(x) = argminθθθ∈R(k+1)(k+2)/2

(
−2θθθT an,x + θθθTBn,xθ

)
which yields the necessary condition

Bn,xθ̂n(x) = an,x.

It is obvious that for a positive de�nite matrix Bn,x the estimator θ̂n(x) is de�ned by the equation

θ̂n(x) = B
−1
n,xan,x and that, also for a positive de�nite matrix Bn,x, with the de�nition of the weights

Wn,i(x) by

Wn,i(x) =
1

n2h1h2
UT (0)B−1

n,xU
(ti − x

h

)
K
(ti − x

h

)
(7)

we obtain

f̂n(x) =
n∑

i1,i2=1

Y(i1,i2)Wn,i(x),

i.e., the estimator f̂n(x) is linear in Yi.

Lemma 1. Let Bn,x be as de�ned in (6), K a kernel as speci�ed in Assumption 1 and de�ne the matrices

B,Bx ∈ R(k+1)(k+2)/2×(k+1)(k+2)/2 as

B :=

∫
R2

U(u)UT (u)K(u) du, and Bx := g1(x1)g2(x2) · B, (8)

where integration is carried out component-wise. Let further Assumption 2 be satis�ed. Then
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(i) for each (p, q) ∈ {1, . . . , (k + 1)(k + 2)/2} × {1, . . . , (k + 1)(k + 2)/2}, 0 < δ < 1/2,

sup
x∈[δ,1−δ]2

∣∣∣Bn,x − Bx

∣∣∣
p,q

= O (h1 + h2)

and

(ii) the matrix Bx is positive de�nite.

Note that the matrix B is independent of the variable x.

Lemma 2. Let B be as de�ned in (8), K a kernel as speci�ed in Assumption 1 and de�ne

K̃B,U (u) := UT (0)B−1U(u)K(u) and s(x) := σ‖K̃B,U‖2
1√

g1(x1)g2(x2)
(9)

then

Var[f̂n(x)] =
s2(x)

n2h1h2
+ o

(
1

n2h1h2

)
,

where the estimate o
(

1
n2h1h2

)
is independent of the variable x.

3.2 A limit theorem and its implications

Given the notation and the auxiliary results presented in the previous Section 3.1 we can now state the

main results for the two-dimensional regression model (1).

Theorem 1. Assume that E|ε(1,1)|r < ∞ for some r > 4/(2 − δ), δ ∈ (0, 1]. Let Assumption 1 and

Assumption 2 be satis�ed and assume
√

log(n)(1/nδh1h2 + 1/nh2
1 + 1/nh2

2) = o(1). Further assume that

there exist constants 0 < l < 1 and L < ∞ such that the inequality h1 + h2 ≤ L(h1h2)1−l holds. Then,

for all 0 < δ < 1/2, κ ∈ R

lim
n→∞

P
(

sup
x∈[δ,1−δ]2

(
s(x)−1n

√
h1h2|f̂n(x)− Ef̂n(x)| − ln

)
ln < κ

)
= e−2e−κ ,

ln :=
√

2 log(C2/(h1h2)) +
log(2 log(C2/(h1h2)))

2
√

2 log(C2/(h1h2))

8



and

C2 =
(1− 2δ)2 · (2π)−3/2

‖K̃B,U‖2

(∫
R2

K̃B,U (u)D(2,0)K̃B,U (u) du

∫
R2

K̃B,U (u)D(0,2)K̃B,U (u) du

−
(∫

R2

K̃B,U (u)D(1,1)K̃B,U (u) du
)2
) 1

2

.

It is clear that in nonparametric curve estimation one always has to deal with the e�ect of bias subject

to smoothing. In the context of the construction of (simultaneous) con�dence bands one of two major

strategies to cope with this di�culty is usually pursued, namely explicit bias correction, which allows for an

"optimal" choice of smoothing parameter and slight undersmoothing, i.e., accepting a higher variability in

the estimation in order to suppress the bias. In this paper we shall follow the latter strategy for which Hall

(1992) gave theoretical justi�cation by showing that it results in minimal coverage error as compared to

explicit bias correction. The price, however, are slightly wider asymptotic bands. As a direct consequence

of Theorem 1 and the use of an undersmoothing bandwidth we obtain the following result.

Corollary 1. Let the assumptions of Theorem 1 be satis�ed and let (h1 +h2)k+a ·n ·
√
h1h2 log(n) = o(1).

Then the set

{
[f̂n(x)− Φn,α(x), f̂n(x)− Φn,α(x)] |x ∈ [δ, 1− δ]2

}
,

where

Φn,α(x) :=
(κα
ln

+ ln

) s(x)

n
√
h1h2

and κα = − log(−0.5 log(1− α))

de�nes an asymptotic uniform (1−α)-con�dence band for the bivariate function f ∈ Ck,a(Ω) from regres-

sion model (1).

4 Multivariate nonparametric regression

In this section we �rst introduce more notation that is needed in order to de�ne the local polynomial

estimator of order k for the multivariate function f. Then we state the d-dimensional versions of Theorem

1 and Corollary 1 presented in the previous section and conclude with a further generalization regarding
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the estimator. For j = 1, . . . , k and Nj,d :=
(
d+j
d

)
let

Ψj :

{
1, . . . , Nj,d−1

}
→
{
ααα ∈ {0, 1, . . . , j}d

∣∣ |ααα| ≤ j}
be an enumeration of the set

{
ααα ∈ {0, 1, . . . , j}d

∣∣ |ααα| ≤ j} and let U : Rd → RNk,d be de�ned as

U(u) :=
(

1, U1,Ψ1(1)(u), . . . , U1,Ψ1(d)(u), . . . , Uk,Ψk(1)(u), . . . , Uk,Ψk(Nk,d−1)(u)
)
,

where

Uj,Ψj(p)(u) =
uΨj(p)

Ψj(p)!
, p = 1, . . . , Nj,d−1, j = 1, . . . , k.

Moreover, for j = 1, . . . , k and h = (h1, . . . , hd) de�ne

θ(x) = (f(x),h1f (1)(x),h2f (2)(x), . . . ,hk · f (k)(x))T ,

where

hjf (j) := (hΨj(1) ·DΨj(1)f, . . . ,hΨj(Nj,d−1) ·DΨj(Nj,d−1)f).

Now we can de�ne the d-dimensional local polynomial estimator of order k of f(x) by

f̂n(x) = UT (0)θ̂n(x),

where

θ̂(x) := argmin
θθθ∈RNk,d

n∑
i1,...,id=1

[
Yi − θ(x)TU

(ti − x

h

)]2
K
(ti − x

h

)

and K : Rd → R+
0 is a kernel function as speci�ed in Assumption 1 above. For x ∈ Ω let an,x,d ∈ RNk,d

and Bn,x,d ∈ RNk,d×Nk,d be the d-dimensional analogues of an,x and Bn,x, i.e.,

an,x,d :=
1

ndh1 · . . . · hd

n∑
i1,...,id=1

YiU
(ti − x

h

)
K
(ti − x

h

)
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and

Bn,x,d :=
1

ndh1 · . . . · hd

n∑
i1,i2=1

U
(ti − x

h

)
UT
(ti − x

h

)
K
(ti − x

h

)
. (10)

Again we have

θ̂n(x) = argmin
θθθ∈RNk,d

(
−2θθθT an,x,d + θθθTBn,x,dθ

)
and f̂n(x) =

n∑
i1,...,id=1

YiWn,i,d(x),

with weights

Wn,i,d(x) =
1

ndh1 · . . . · hd
UT (0)B−1

n,x,dU
(ti − x

h

)
K
(ti − x

h

)
. (11)

provided the matrix Bn,x,d is positive de�nite.

Theorem 2. Assume that E|ε(1,...,1)|r < ∞ for some r > 2d/(d − δ), δ ∈ (0, 1], δ 6= d. Let Assumption

1 and Assumption 2 hold and let
√

log(n)
(
1/(nδh1 · . . . · hd) + 1/(nhd1) + . . . + 1/(nhdd)

)
= o(1). Further

assume that there exist constants 0 < l < 1 and L <∞ such that the inequality
∑d

p=1 hp ≤ L(
∏d
p=1 hp)

1−l

holds. Then, for all 0 < δ < 1/2, κ ∈ R, sd(x) := σ‖K̃B,U‖/
√
g1(x1) · . . . · gd(xd)

lim
n→∞

P
(

sup
x∈[δ,1−δ]2

(
sd(x)−1n

d
2

√
h1 · . . . · hd|f̂n(x)− Ef̂n(x)| − ln

)
ln < κ

)
,= e−2e−κ ,

ln :=
√

2 log(Cd/(h1 · . . . · hd)) + (d− 1)
log(2 log(Cd/(h1 · . . . · hd))
2
√

2 log(Cd/(h1 · . . . · hd))
,

Λ2 :=

(
1

‖K̃B,U‖

∫
Rd
K̃B,U (u)

∂2

∂ui∂uj
K̃B,U (u) du

)d
i,j=1

and

Cd = (1− 2δ)d · (2π)−(d+1)/2
√
det(Λ2).

Corollary 2. Let the assumptions of Theorem 1 be satis�ed and let (h1+. . .+h2)k+a·n
d
2 ·
√
h1 · . . . · hd log(n) =
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o(1). Then the set

{
[f̂n(x)− Φn,α,d(x), f̂n(x)− Φn,α,d(x)] |x ∈ [δ, 1− δ]d

}
,

where Φn,α,d(x) :=
(
κα
ln

+ ln

)
sd(x)

n
d
2
√
h1·...·hd

and κα = − log(−0.5 log(1− α)), de�nes an asymptotic uni-

form (1− α)-con�dence band for the multivariate function f ∈ Ck,a(Ω) from regression model (1).

The results stated above hold for general linear nonparametric kernel regression estimates with a kernel of

convolution form, or a sequence of kernels even, satisfying Assumption 1. This is a consequence of the fact

that they can be approximated by a suitable stationary Gaussian process, where the supremum is taken

with respect to a growing system of sets, which has an extreme value limit distribution. To conclude the

section we now present another limit theorem in which this generalization is formalized.

Theorem 3. Assume that the conditions of Theorem 2 are satis�ed and that

f̂n(x) =
1

ndhd1 · . . . · hd

n∑
i1,...,id=1

YiK
(n)
(ti − x

h

)
,

with a sequence of kernels (K(n))n∈N meeting Assumption 1 and one of the following two conditions

(i) There exists a number M ∈ N, kernels K,K1, . . . ,KM , each satisfying Assumption 1, and sequences

(an,1)n∈N, . . . , (aM,n)n∈N such that ap,n = o

(
1√

log(n)

)
, p = 1, . . . ,M and

K(n) −K =
M∑
p=1

an,pKp.

(ii) There exists a limit kernel K, meeting Assumption 1 such that

‖K(n) −K‖∞√
h1 · . . . · hd

= o
(
1/
√

log(n)
)
.

Then Theorem 2 holds when each K̃B,U is to be replaced by K in the de�nitions of the quantities sd(x)

and Λ2.

Remark 2. This is relevant in several applications. For instance, in the context of spline smoothing,

Silverman (1984) showed that a one dimensional cubic spline estimator is asymptotically of convolution-
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kernel form with a bounded, smooth kernel KS de�ned by KS(u) = 1/2 exp(−|u|/
√

2) sin(|u|/
√

2 + π/4).

The associated estimator satis�es the assumptions of Theorem 3 except for Assumption 1 (i). The results

of this paper also hold in this case, even for relatively mild (polynomial) decay of the kernel function in

each direction, however, the technical complexity is unproportionally greater, hence we will not include

this case to our considerations.

5 Finite sample properties

In this section the �nite sample properties of the proposed asymptotic con�dence bands are investigated.

First, the simulation setup is described in section 5.1 and the results are presented and discussed in section

5.2.

Figure 1: Contour plots of lower con�dence surfaces (left), true regression surface (middle) and upper

surface (right) based on the local linear estimator and n = 250 for f1 (upper panel) and f2 (lower panel).

5.1 Simulation setup

All results are based on 2500 simulation runs. We simulate data from the bivariate regression model

(1) with normally distributed errors εi,j ∼ N (0, σ2) where σ = 0.3 and (n1, n2) ∈ {1, . . . , n}2, n ∈

{75, 150, 250}. For the unknown regression function we consider two di�erent versions f1 and f2 of a
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product of trigonometric functions de�ned by

fj(x1, x2) = − sin(2jπ(x1 − 0.5)) cos(2jπx2), j = 1, 2

with increasing complexity (see Figure 1, central column for a contour plot of both functions under

consideration). As kernel function K we consider a product kernel K(x1, x2) = K1(x1) · K1(x2) with

a compactly supported, three times continuously di�erentiable function K1(x) = (1 − x2)4I[−1,1](x). In

these settings we compare the performances of both a local linear as well as a local quadratic estimator.

The corresponding limit kernels K̃B,U,lin and K̃B,U,quad are then given by K̃B,U,lin(x) = 1.514 ·K(x) and

K̃B,U,quad(x) =
(
3.482− 10.826(x2

1 + x2
2)
)
K(x). A di�erence based variance estimator is used to estimate

σ2. Concerning the smoothing parameter h we �rst determine a suitable value for each setting by a

small preliminary simulation study. These �xed smoothing parameters are then used in all runs for the

respective simulation setting.

Figure 2: Contour plots of the lower (left) and upper (right) con�dence surfaces for the regression function

f2 based on the local quadratic estimator and each of 75 (upper panel), 150 (middle panel) and 250 (lower

panel) observations. The true regression surface is shown in the central column.
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5.2 Simulation results

Table 1: Simulated coverage probabilities and mean half-lengths of the con�dence bands for the functions

f1 and f2 and the local linear estimator.

90% nominal coverage 95% nominal coverage 99% nominal coverage

n f Cov.(%) Length Cov. (%) Length Cov. (%) Length

f1 85.86 0.083 93.20 0.087 99.00 0.097
250

f2 88.68 0.173 95.64 0.179 99.44 0.197

f1 88.92 0.133 95.04 0.140 99.08 0.148
150

f2 87.92 0.225 94.04 0.234 99.28 0.258

f1 87.24 0.224 94.00 0.236 99.36 0.264
75

f2 89.36 0.326 94.44 0.342 99.24 0.379

Table 2: Simulated coverage probabilities and mean half-lengths of the con�dence bands for the functions

f1 and f2 and the local quadratic estimator.

90% nominal coverage 95% nominal coverage 99% nominal coverage

n f Cov.(%) Length Cov. (%) Length Cov. (%) Length

f1 88.44 0.099 94.96 0.104 99.44 0.115
250

f2 89.92 0.098 94.64 0.102 98.84 0.114

f1 90.40 0.145 95.68 0.152 99.16 0.168
150

f2 91.80 0.143 96.24 0.149 99.60 0.166

f1 92.44 0.277 97.24 0.291 99.72 0.323
75

f2 92.40 0.259 96.80 0.273 99.68 0.302

We now summarize the results of the simulation study. Figure 2 illustrates the con�dence bands based

on the local quadratic estimator for the regression function f2, top down for growing sample sizes. In

each row, the contourplots show the lower con�dence surface, the true object and the upper con�dence

surface (from left to right) and the improvement in the performance for growing n clearly shows. Tables 1

and 2 contain the simulated coverage probabilities and the average half widths of the bands for the local

linear and the local quadratic estimator, respectively. We observe that, even for moderate sample sizes,

the simulated coverage probabilities are close to the nominal values and that the bands are reasonably

narrow. Further it is evident that the bands for f1 constructed with the local linear estimator are narrower

than the ones for the local quadratic estimator. This is due to the fact that the local linear estimator

produces a smaller variance because the L2-norms of the limit kernels K̃B,U,lin and K̃B,U,quad are not

equal, more precisely ‖K̃B,U,lin‖2 < ‖K̃B,U,quad‖. Nevertheless the results for the local quadratic estimator

15



are slightly better which is due to the smaller bias of this estimator as compared to its linear counterpart

which guarantees a more accurate centering of the bands and results in higher coverage. We also �nd that,

while there seems to be hardly any di�erence for the di�erent settings for the local quadratic estimator,

the bands for f2 based on the local linear estimator are clearly wider. The e�ect is shown in Figure 2

where plots of both cases for the local linear estimator are displayed.
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6 Proofs

In this section we present the proofs of the results presented in the previous sections. Those that are

completely analogous to the ones presented in Tsybakov (2009), Chapter 1.6, are omitted, only some

extensions are included in this section.

6.1 Proofs of auxiliary results

Proof of Lemma 1

Since each entry U (p0)(u)U (q0)(u) of the matrix

U(u)UT (u) =
(
U (p)(u)U q(u)

)(k+1)(k+2)/2

p,q=1

is a polynomial (of degree ≤ k) the smoothness properties of K transfer to the products

U (p0)(u)U (q0)(u) ·K.

hence it follows by Assumption 2 that

(
Bn,x

)
(p0,q0)

=
1

n2h1h2

n∑
i1,i2=1

U (p0)
(ti − x

h

)
U (q0)

(ti − x

h

)
K
(ti − x

h

)
=

1

h1h2

∫ 1

0

∫ 1

0
U (p0)

(z− x

h

)
U (q0)

(z− x

h

)
K
(z− x

h

)
g1(z1)g2(z2) dz +O

(
1

n

)
=

∫ 1−x2
h2

− x2
h2

∫ 1−x1
h1

− x1
h1

U (p0)(u)U (q0)(u)K(u)g1(x1 + h1u1)g2(x2 + h2u2) du.+O

(
1

n

)
.

Finally, again by Assumption 2

(
Bn,x

)
(p0,q0)

= g1(x1)g2(x2)

∫ 1

−1

∫ 1

−1
U (p0)(u)U (q0)(u)K(u) du +O

(
1

n
+ h1 + h2

)
,

for su�ciently large n .
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Proof of Lemma 2

Lemma 1 implies

Varf̂n(x) = σ2
n∑

i1,i2=1

(
Wn,(i1,i2)(x)

)2
=

σ2

g2
1(x1)g2

2(x2)n4h2
1h

2
2

( n∑
i1,i2=1

(
UT (0)B−1U

(ti − x

h

)
K
(ti − x

h

))2

+ o (1)

)
.

By Assumption 2 and Assumption 1 we obtain

Varf̂n(x) =
σ2

g2
1(x1)g2

2(x2)n2h2
1h

2
2

n∑
i1,i2=1

(
K̃B,U

(ti − x

h

))2

g1(ti1)g2(ti2)(ti1 − ti1−1)(ti2 − ti2−1)

+ o
( 1

n2h1h2

)

and the assertion of the lemma immediately follows.

2

6.2 Proofs of Theorem 1 and Corollary 1

In order to prove Theorem 1 we perform several steps to approximate the quantity n
√
h1h2s(x)−1

(
f̂n(x)−

Ef̂n(x)
)
uniformly in x ∈ [δ, 1− δ]2 by a stationary Gaussian �eld Z(x) :=

∫
R2 K̃B,U (t− x) dt, where the

function K̃B,U is de�ned in (9) and the supremum is then taken over the set 1
h1
I1 × 1

h2
I2. Then we apply

Theorem 14.1 in Piterbarg (1996) to this stationary �eld which will complete the proof of the theorem.

De�ne the process

Zn,0(x) :=

√
g1(x1)g2(x2)

σ‖K̃B,U‖n
√
h1h2

n∑
i1,i2=1

Wn,i(x)ε(i1,i2).
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Zn,0 can be decomposed as follows (see Lemma 7 below for details)

Zn,0(x) =

√
g1(x1)g2(x2)

σ‖K̃B,U‖n
√
h1h2

n∑
i1,i2=1

K̃Bx,U
(ti − x

h

)
ε(i1,i2) +

√
g1(x1)g2(x2)

σ‖K̃B,U‖n
√
h1h2

n∑
i1,i2=1

K̃Rn,x,U
(ti − x

h

)
ε(i1,i2)

=
1

σ‖K̃B,U‖n
√
h1h2g1(x1)g2(x2)

n∑
i1,i2=1

K̃B,U
(ti − x

h

)
ε(i1,i2)

+

√
g1(x1)g2(x2)

σ‖K̃B,U‖n
√
h1h2

n∑
i1,i2=1

K̃Rn,x,U
(ti − x

h

)
ε(i1,i2) =: Zn,1(x) +Rn,0(x),

where the processes Zn,1(x) and Rn,x(x) are de�ned in an obvious manner. In a �rst approximation step

Zn,0 is approximated by Zn,1. In a next step the observation errors are replaced by their partial sums

which allows to replace Zn,1 by Zn,2:

Zn,2(x) :=
1

‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

n∑
i1,i2=1

∆

(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
W (i1, i2),

where W is the Wiener sheet speci�ed in Lemma 3,

∆

(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
=K̃B,U

(t(i1,i2) − x

h

)
− K̃B,U

(t(i1−1,i2) − x

h

)
− K̃B,U

(t(i1,i2−1) − x

h

)
+ K̃B,U

(t(i1−1,i2−1) − x

h

)

and G−1(z) :=
(
G−1

1 (z1), G−1
2 (z2)

)
. To this end we extend an approach introduced by Stadtmüller (1986)

or Eubank and Speckman (1993) for one-dimensional models with deterministic (close to) uniform design.

Note that it is not immediate how to generalize this methodology to higher dimensions as well as a not

necessarily uniform design under general design assumptions and a broader class of estimators, which is all

here. Next, the sum is approximated by the corresponding Wiener integral which gives the approximation

of Zn,2 by Zn,3, de�ned by

Zn,3(x) :=
1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

∫
I
K̃B,U

(z− x

h

)
dW (G(z)),
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where G(z) :=
(
G1(z1), G2(z2)

)
. We now de�ne

Zn,4(x) :=
1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

∫
I
K̃B,U

(z− x

h

)√
g1(z1)g2(z2) dW (z).

Note that Zn,3 and Zn4 have the same probability structure, i.e., {Zn,3(x)} D= {Zn,4(x)}. Hence, in a next

step we replace Zn,4 by Zn,5, de�ned by

Zn,5(x) :=
1

‖K̃B,U‖
√
h1h2

∫
I
K̃B,U

(z− x

h

)
dW (z).

In a further step we replace the process Zn,5 by the stationary Process Zn,6

Zn,6(x) :=
1

‖K̃B,U‖

∫
R2

K̃B,U
(
z− x

)
dW (z),

and take the supremum with respect to x ∈ 1/h1[δ, 1−δ]×1/h2[δ, 1−δ]. Last we show that the remainder

process Rn,0 is negligible, that is supx∈[δ,1−δ]2 |Rn,0(x)| = oP
(
log(n)−1/2

)
.

Each approximation step corresponds to one of the lemmas 3 to 7 listed and proven below.

Lemma 3. There exists a Wiener sheet W on a suitable probability space such that

sup
x∈I
|Zn,1(x)− Zn,2(x)| = O

(
log(n)

nδ
√
h1h2

)
,

where δ ∈ (0, 1] is the constant de�ned in Theorem 1.

Proof. Here and in what follows let I denote the unit cube, i.e., I := [0, 1]d. De�ne the partial sums

S(i1,i2), indexed by double-indices (i1, i2) ∈ {0, 1, . . . , n}2 by

S(i1,i2) :=

i1∑
p=1

i2∑
q=1

ε(p,q)

and set S(i1,0) ≡ S(0,i2) ≡ 0 for all (i1, i2) ∈ {0, . . . , n}2. Note that the following identity holds:

ε(i1,i2) = S(i1,i2) − S(i1−1,i2) + S(i1−1,i2−1) − S(i1,i2−1),

i.e., the errors can be replaced by the respective "increments" on [i−1, i] =: [i1− 1, i1]× [i2− 1, i2] of the
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partial sum process on the grid {0, . . . , n} × {0, . . . , n}. We thus obtain

Zn,1(x) =
1

σ‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

n∑
i,j=1

K̃B,U

(t(i1,i2) − x

h

)[
S(i1,i2) − S(i1−1,i2) + S(i1−1,i2−1) − S(i1,i2−1)

]
.

We can now re-sort the sum and obtain a sum that contains the increments of the function z 7→

K̃B,U

(
G−1(z)−x

h

)
instead of the increments of the partial sum process and obtain

Zn,1(x) =
1

σ‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

{ n−1∑
i1,i2=1

∆
(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
S(i1,i2)

−
n−1∑
i1=1

K̃B,U

(t(i1+1,n) − x

h

)
S(i1,n) +

n−1∑
i1=1

K̃B,U

(t(i1,n) − x

h

)
S(i1,n)

−
n−1∑
i2=1

K̃B,U

(t(n,i2+1) − x

h

)
S(n,i2) +

n−1∑
i2=1

K̃B,U

(t(n,i2) − x

h

)
S(n,i2)

+ ∆
(
z 7→ K̃B,U

(G−1(z)− x

h

)
S(z1,z2); [0, n]× [0, n]

)}
.

Observe that x ∈ [δ, 1 − δ]2, t(i1,n) = (G−1
1 (i1/n), 1), x(n,i2) = (1, G−1

2 (i2/n)) and for large enough n,

δ/h1 ∧ δ/h2 > 1. From Assumption 1 and from S(i1,0) ≡ S(0,i2) ≡ 0 for all (i1, i2) ∈ {0, . . . , n}2. It now

follows that all terms except the �rst one in the latter representation of Zn,1(x) are equal to zero for

su�ciently large n, which implies

Zn,1(x) =
1

σ‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

n−1∑
i1,i2=1

∆
(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
S(i1,i2).

for all n ≥ n0, for some n0 ∈ N. This yields

|Zn,1(x)− Zn,2(x)|

=
1

‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

∣∣∣∣ n−1∑
i1,i2=1

∆
(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])(S(i1,i2)

σ
−W (i1, i2)

)∣∣∣∣
≤

sup1≤i1,i2≤n |S(i1,i2)/σ −W (i1, i2)|

‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

n−1∑
i1,i2=1

∣∣∣∣∆(z 7→ K̃B,U
(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])∣∣∣∣
≤

sup1≤(i1,i2)≤n |S(i1,i2)/σ −W (i1, i2)|

‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

∫
R2

|D(1,1)K̃B,U (z)| dz.
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The assertion of the lemma now follows from Theorem 1 in Rio (1993), which gives the estimate

sup
1≤i1,i2≤n

|S(i1,i2)/σ −W (i1, i2)| = O
(
n

2−δ
2

√
log(n)

)
a.s.,

since, under the assumptions of Theorem 1, E|ε(1,1)|r <∞ for r > 4/(2− δ). It follows that

sup
x∈[δ,1−δ]2

|Zn,1(x)− Zn,2(x)| = O
(√ log(n)

h1h2nδ

)
= o

(
(log(n))−

1
2

)
.

For the next approximation step we need that 1/(nh1h2) = o(1/log(n)2) whis is implied by the conditions

of Theorem 1.

Lemma 4. Under the assumptions of Theorem 1 the process Zn,2(x) can be approximated by Zn,3(x)

uniformly with respect to x ∈ [δ, 1− δ]2, i.e.

sup
x∈[δ,1−δ]2

|Zn,2(x)− Zn,3(x)| = o
(
log(n)−1/2

)
.

Proof. There exists a number n0 ∈ N such that we obtain by integration by parts

∫
I
K̃B,U

(z− x

h

)
dW (G(z)) =

∫
I
D(1,1)K̃B,U

(z− x

h

)
W (G(z)) dz

for all n ≥ n0. Here, all terms obtained by integration by parts except the one on the right hand side

vanish for su�ciently large n since W (z1, 0) ≡W (0, z2) ≡ 0 and all edge points lie outside the support of

the kernel K̃B,U . The increment of K̃B,U in the de�nition of the process Zn,2 can be expressed in terms

of an integral as follows

∆
(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
=

∫[
i−1
n+1

, i
n+1

]D(1,1)

(
K̃B,U

(G−1(z)− x

h

))
dz,

see, e.g., Owen (2005), Section 9, where we used the notation

D(1,1)

(
K̃B,U

(G−1(z)− x

h

))
= D(1,1)

(
K̃B,U

)(G−1(z)− x

h

)
· G
−1′

1 (z1)G−1′

2 (z2)

h1h2
.
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This gives

Zn,2(x) =
1

‖K̃B,U‖n
√∏2

j=1 gj(xj)hj

n−1∑
i1,i2=0

∫[
i−1
n+1

, i
n+1

]D(1,1)

(
K̃B,U

(G−1(z)− x

h

))
dzW (i1, i2)

D
=

1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

n−1∑
i1,i2=0

∫[
i−1
n+1

, i
n+1

]D(1,1)

(
K̃B,U

(G−1(z)− x

h

))
dzW (

i1
n
,
i2
n

).

By change of variables we further obtain

Zn,2(x) =
1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

n−1∑
i1,i2=0

∫[
t(i1−1,i2−1),t(i1,i2)

]D(1,1)

(
K̃B,U

(u− x

h

))
duW (

i1
n
,
i2
n

)

=
1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

n−1∑
i1,i2=0

∫[
t(i1−1,i2−1),t(i1,i2)

]D(1,1)

(
K̃B,U

(u− x

h

))
duW (G1(ti1), G2(ti2)).

by de�nition of the design points. Moreover,

Zn,3(x) =
1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

∫
I
D(1,1)

(
K̃B,U

(u− x

h

))
W (G(u)) du

=
1

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

n−1∑
i,j=1

∫[
t(i1−1,i2−1),t(i1,i2)

]D(1,1)

(
K̃B,U

(u− x

h

))
W (G(u)) du.

and hence

∣∣Zn,2(x)− Zn,3(x)
∣∣ =

1

‖K̃B,U‖
√
h1h2

∣∣∣∣ n−1∑
i,j=1

∫[
ti−1,ti

]D(1,1)

(
K̃B,U

(u− x

h

))(
W (G(ti))−W (G(u))

)
du

∣∣∣∣.
Next we apply Theorem 3.2.1 in Khoshnevisan (2002) which gives a modulus of continuity for the Wiener

sheet

∣∣W (G(ti))−W (G(z))
∣∣ ≤√ log(n)

n
sup
k≥n

sup
y,z∈I

‖y−z‖∞≤1/k

|W (z)−W (y)|√
log(n)
n

= O
(√

log(n)n−1
)

almost surely. We also observe that

n−1∑
i,j=1

∫[
t(i1−1,i2−1),t(i1,i2)

]∣∣∣D(1,1)

(
K̃B,U

(u− x

h

))∣∣∣ du ≤ ∫
R2

|D(1,1)K̃B,U
(
z
)
| dz <∞,
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which conclude the proof of this lemma.

Lemma 5.

|Zn,3(x)− Zn,5(x)| = OP
(
log(n) (h1 + h2)

3
2h
−1/2
1 h

−1/2
2

)
.

Proof. Since Zn,3 and Zn,4 have the same probability structure we show that supx∈[δ,1−δ]2 |Zn,4(x) −

Zn,5(x)| = O

(
log(n) (h1+h2)

3
2√

h1h2

)
almost surely which proves the assertion of the lemma. Again, by inte-

gration by parts for su�ciently large n, since K̃B,U is of bounded support,

Zn,4(x)− Zn,5(x) =
1

‖K̃B,U‖

∫
I
D(1,1)

[
K̃B,U

(z− x

h

)√g1(z1)g2(z2)−
√
g1(x1)g2(x2)√

h1h2g1(x1)g2(x2)

]
W (z) dz.

By change of variables, under Assumption 2 with the modulus of continuity of the Brownian sheet (here,

|u| ≤ 1, since K has support contained in the cube [−1, 1]× [−1, 1])

Zn,4(x)− Zn,5(x)

=
1

‖K̃B,U‖

∫[
−x
h
,1−x

h

]D(1,1)
[
K̃B,U (u)

√
g1(x1 + u1h1)g2(x2 + u2h2)−

√
g1(x1)g2(x2)√

h1h2g1(x1)g2(x2)

]
W (x + hu) du

=
W (x)

‖K̃B,U‖

∫[
−x
h
,1−x

h

]D(1,1)
[
K̃B,U (u)

√
g1(x1 + u1h1)g2(x2 + u2h2)−

√
g1(x1)g2(x2)√

h1h2g1(x1)g2(x2)

]
du

+O

(
log(n)

(h1 + h2)
3
2

√
h1h2

)

almost surely. Furthermore,

∫[
−x
h
,1−x

h

]D(1,1)
[
K̃B,U (u)

√
g1(x1 + u1h1)g2(x2 + u2h2)−

√
g1(x1)g2(x2)

]
du

= ∆
(
u 7→ K̃B,U (u)

√
g1(x1 + u1h1)g2(x2 + u2h2)−

√
g1(x1)g2(x2) ;

[−x
h
,
1− x

h

])
,
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which implies

Zn,4(x)− Zn,5(x) =

[
K̃B,U

(−x1

h1
,
−x2

h2

)(√
g1(0)g2(0)−

√
g1(x1)g2(x2)

)
− K̃B,U

(−x1

h1
,
1− x2

h2

)(√
g1(0)g2(1)−

√
g1(x1)g2(x2)

)
− K̃B,U

(1− x1

h1
,
−x2

h2

)(√
g1(1)g2(0)−

√
g1(x1)g2(x2)

)
+ K̃B,U

(1− x1

h1
,
1− x2

h2

)(√
g1(1)g2(1)−

√
g1(x1)g2(x2)

)] W (x)

‖K̃B,U‖
√∏2

j=1 gj(xj)hj

+O

(
log(n)

(h1 + h2)
3
2

√
h1h2

)
.

For su�ciently large n ∈ N the �rst four summands vanish completely and thus

|Zn,4(x)− Zn,5(x)| = O
(
log(n) (h1 + h2)

3
2 /
√
h1h2

)
,

which completes the proof of this lemma.

Lemma 6. Under the assumptions of Theorem 1 the following result holds

sup
x∈[δ,1−δ]2

|Zn,5(x)| D= sup
x∈ 1

h1
[δ,1−δ]× 1

h2
[δ,1−δ]

|Zn,6(x)|+ o
(
log(n)−1/2

)
.

Proof. A combination of integration by parts, change of variables and the scaling property of the Brownian

sheet yield

Zn,5(x)
D
=

1

‖K̃B,U‖
√
h1h2

∫
[0,1/h1]×[0,1/h2]

D(1,1)K̃B,U

(
z− x

h

)
W (z) dz.

With the de�nition of the sets D<0 := {(z1, z2) ∈ R2 | z1 < 0 ∨ z2 < 0} and D> 1
h

:= {(z1, z2) ∈ R2 | z1 >

1/h1 ∨ z2 > 1/h2} we obtain

Zn,6(
x

h
)− Zn,5(x) =

1

‖K̃B,U‖

∫
D<0

K̃B,U

(
z− x

h

)
dW (z) +

1

‖K̃B,U‖

∫
D
> 1
h

K̃B,U

(
z− x

h

)
dW (z).

For z ∈ D> 1
h
, x ∈ [δ, 1− δ]2 we further have zj −xj/hj > δ/hj for j = 1 ∨ j = 2 and for z ∈ D<0, x ∈

[δ, 1 − δ]2 we obtain zj − xj/hj < −δ/hj for j = 1 ∨ j = 2. Since δ is a �xed positive constant there

26



exists a number n0 ∈ N such that K̃B,U
(
z − x/h

)
≡ 0 for all z ∈ D<0 ∪D> 1

h
, x ∈ [δ, 1 − δ]2. Hence,

for n ≥ n0 Zn,6(x/h)
D
= Zn,5(x) and

sup
x∈[δ,1−δ]2

|Zn,6(x/h)| D= sup
x∈[δ,1−δ]2

|Zn,5(x)| D= sup
x∈ 1

h1
[δ,1−δ]× 1

h2
[δ,1−δ]

|Zn,6(x)|,

which completes the proof of the lemma.

Proof of Theorem 1

Given the assumptions of Theorem 1 regarding the relative growth of the bandwidths h1 and h2, the

system of sets
{

1
h1

[δ, 1− δ]× 1
h2

[δ, 1− δ]
∣∣n ∈ N

}
with volumes (1−2δ)2/(h1h2) is a blowing up system of

sets according to De�nition 14.1 in Piterbarg (1996). An application of Theorem 14.3 therein thus yields

lim
n→∞

P
(

sup
x∈ 1

h1
[δ,1−δ]× 1

h2
[δ,1−δ]

(
|Zn,6(x)| − ln

)
ln < κ

)
= e−2e−κ .

The following lemma provides the last missing piece, the negligibility of the remainder Rn,0.

Lemma 7. Let Assumption 1 and 2 be satis�ed. Then

sup
x∈[δ,1−δ]

|Rn,0(x)| = OP

(√
log(n)(h1 + h2)

)
.

Proof. Lemma 1 implies the decomposition B
−1
n,x = B

−1
x +R

−
n,x with a (k+ 1)(k+ 2)/2× (k+ 1)(k+ 2)/2-

matrix R
−
n,x that has the property

sup
x∈[δ,1−δ]2

|(R−
Bn,x

)p,q| = O(h1 + h2), (p, q) ∈ {1, . . . , (k + 1)(k + 2)/2}2. (12)

Rn,0(x) =

√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

K̃Rn,x,U
(ti − x

h

)
ε(i1,i2)

=

√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

UT (0)R−n,xU
(ti − x

h

)
K
(ti − x

h

)
ε(i1,i2).

The quantity UT (0)R−n,x =
(
(r−n,x)1,1, . . . , (r

−
n,x)1,(k+1)(k+2)/2

)
∈ R1×(k+1)(k+2)/2 is the �rst row of the
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matrix R
−
n,x and U

(
ti−x
h

)
=

(
U (1)

(
ti−x
h

)
, . . . , U ((k+1)(k+2)/2)

(
ti−x
h

))
∈ R(k+1)(k+2)/2, hence we can

write

(k+1)(k+2)/2∑
p=1

(r−n,x)1,p

√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

U (p)
(ti − x

h

)
K
(ti − x

h

)
ε(i1,i2).

For each �xed number p0 ∈ {1, . . . , (k + 1)(k + 2)/2} we �nd

sup
x∈[δ,1−δ]2

∣∣∣∣(r−n,x)1,p0

√
g1(x1)g2(x2)

σn
√
h1h2

n∑
i1,i2=1

U (p0)
(ti − x

h

)
K
(ti − x

h

)
ε(i1,i2)

∣∣∣∣
≤ sup

x∈[δ,1−δ]2

∣∣∣∣(r−n,x)1,p0

√
g1(x1)g2(x2)

∣∣∣∣ sup
x∈[δ,1−δ]2

∣∣∣∣ 1

σn
√
h1h2

n∑
i1,i2=1

U (p0)
(ti − x

h

)
K
(ti − x

h

)
ε(i1,i2)

∣∣∣∣
= sup

x∈[δ,1−δ]2

∣∣∣∣(r−n,x)1,p0

√
g1(x1)g2(x2)

∣∣∣∣OP (√log(n)
)

= OP

(
(h1 + h2)

√
log(n)

)
(13)

with the same arguments as used before to prove the convergence of supx∈[δ,1−δ]2 |Zn,1(x)|, property (12)

and since the design densities g1 and g2 are bounded.

An application of lemmas 3-7 completes the proof of Theorem 1.

2

Proof of Corollary 1

In order to prove the corollary we need to calculate the bias of the estimator f̂n(x). For this matter we

need the following auxiliary result.

Lemma 8. If Assumptions 1 and 2 hold the matrix Bx is positive de�nite.

Proof. Let v ∈ R(k+1)(k+2)/2\{0}. Assumption 1 implies that

vTBv =

∫ ∫ (
vTU(u)

)2
K(u) du ≥ K1

∫ D

−D

∫ D

−D

(
vTU(u)

)2
du ≥ 0.

For v 6= 0 the quantity vTU(u) 6= 0 is a plolynomial in u of degree ≤ k and it can only be equal to zero

at a �nite number of points. Since also D > 0 it follows that vTBv > 0 and since the design densities g1

and g2 are bounded away from zero it also follows that vTBxv = g1(x1)g2(x2)vTBv > 0, which concludes

the proof of the lemma.
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Corollary 3. For su�ciently large n ∈ N the matrix Bn,x is positive de�nite, i.e., there exists a positive

constant λ0 and a positive number n0 ∈ N such that the smallest eigenvalue λmin(Bn,x) ≥ λ0, for all

x ∈ [0, 1]2 if n ≥ n0.

Also, we make use of the fact that the local polynomial estimator of order k reproduces polynomials of

degree ≤ k. This means that for any polynomial Q with Q(x) =
∑

βββ∈{0,...,k}2, |βββ|≤k aβββx
βββ for x ∈ R2 the

following equality holds

n∑
i1,i2=1

Q(t(i1,i2))Wn,(i1,i2)(x) = Q(x). (14)

and hence

bias(f̂n, f,x) = Ef̂n(x)− f(x) =
n∑

i1,i2=1

[f(t(i1,i2))− f(x)]Wn,(i1,i2)(x),

since (14) implies the identity
∑n

i1,i2=1Wn,(i1,i2)(x) = 1.

Equation (14) further implies that
∑n

i1,i2=1(t(i1,i2) − x)βββWn,(i1,i2)(x) = 0 for all multi-indices βββ ∈

{0, . . . , k}2, |βββ| ≤ k. By Taylor expansion and from (3) we obtain

bias(f̂n, f,x) ≤
n∑

i1,i2=1

Cf,k‖t(i1,i2) − x‖a|Wn,(i1,i2)(x)| ≤ Cf,k(h1 + h2)k+a
n∑

i1,i2=1

‖t(i1,i2) − x‖a|Wn,(i1,i2)(x)|

≤
K2Cf,k(h1 + h2)k+a

λminn2h1h2

n∑
i1,i2=1

∥∥∥U(t(i1,i2) − x

h

)∥∥∥I[x1−h1,x1+h1](ti1)I[x2−h2,x2+h2](ti2).

Since tij = G−1(ij/(n + 1)) and G is strictly increasing the indicator functions I[xj−hj ,xj+hj ](tij ) can be

replaced by I[Gj(xj−hj),Gj(xj+hj)](Gj(tij )) for j = 1 and j = 2. This �nally implies

bias(f̂n, f,x) = O
(

(h1 + h2)k+a
)
.

2
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7 Proofs of Theorem 2 and Corollary 2

In this section we sketch the extension of the proofs of the results of Section 6.2 to the case of general

dimension d. Here, we need a multivariate generalization of the concept of functions of bounded variation

for which we make use of the elementary, intuitive approach in terms of suitable generalizations of incre-

ments such as it is given in Owen (2005). The generalization of the concept of increments ∆d of a function

f over d-dimensional intervals [a,b] that is relevant for us in this context is given by the de�nition

∆d

(
f ; [a,b]

)
:=

∑
ααα∈{0,1}d

(−1)|ααα|f(b +ααα� (a− b)),

where ααα�(a−b) = (α1 ·(a1−b1), . . . , αd ·(ad−bd))T denotes the vector of component-wise products of the

multi-index ααα and the vector b− a. The above de�ned increments ∆d of a function f over d-dimensional

intervals [a,b] have the following property

∆d

(
f ; [a,b]

)
=

∫
[a,b]

D(1,...,1)f(x) dx. (15)

Lemma 3d. There exists a Wiener sheet W on a suitable probability space such that

sup
x∈[δ,1−δ]d

|Zn,1,d(x)− Zn,2,d(x)| = O

(
log(n)

nδ
√
h1h2

)
,

where

Zn,1,d(x) :=
1

σ‖K̃B,U‖n
d
2

√∏d
j=1 gj(xj)hj

n∑
i1,...,id=1

K̃B,U
(ti − x

h

)
εi1,...,id

and

Zn,2,d(x) :=
1

‖K̃B,U‖n
d
2

√∏d
j=1 gj(xj)hj

n∑
i1,...,id=1

∆d

(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
W (i1, . . . , i2).

Proof. For general dimension d de�ne the partial sum S(i1,...,id) :=
∑i1

p1
. . .
∑id

pd=1 ε(p1,...,pd) and set Si ≡ 0

if ij = 0 for at least one j ∈ {1, . . . , d}. Again we can replace the errors by suitable increments of the
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partial sum S(·) over [i− 1, i] :

ε(i1,...,id) = ∆d(S(·), [i− 1, i]) =
∑

ααα∈{0,1}d
(−1)|ααα|S(i−ααα) =

∑
ααα∈{0,1}d

(−1)|ααα|S(i1−α1,...,id−αd).

With the same arguments as in the two dimensional case the replacement of the errors by the increments

of the partial sums yields for su�ciently large n (such that all boundary terms vanish)

Zn,1,d(x) =
1

σ‖K̃B,U‖n
d
2
∏d
j=1

√
hijgij (x1)

n−1∑
i1,...,id=1

∆d

(
z 7→ K̃B,U

(G−1(z)− x

h

)
;
[ i− 1

n+ 1
,

i

n+ 1

])
Si1,...,id .

Another application of Theorem 1 in Rio (1993) yields the estimate

sup
x∈[δ,1−δ]d

|Zn,1,d(x)− Zn,2,d(x)| = O

(( nδ−d log(n)

ndh1 · . . . · hd

) 1
2

)
= O

(( log(n)

nδh1 · . . . · hd

) 1
2

)
.

Lemma 4d. Under the assumptions of Theorem 2 the process Zn,2(x) can be approximated by Zn,3(x)

uniformly with respect to x ∈ [δ, 1− δ]d, i.e.

sup
x∈[δ,1−δ]d

|Zn,2,d(x)− Zn,3,d(x)| = o

(
1√

log(n)

)
,

where

Zn,3(x) :=
1

‖K̃B,U‖
∏d
j=1

√
hjgj(xj)

∫
I
K̃B,U

(z− x

h

)
dW (G(z)).

Proof. Also for the d-dimensional case there exists a number n0 ∈ N such that we obtain by integration

by parts for all n ≥ n0

∫
I
K̃B,U

(z− x

h

)
dW (G(z)) =

∫
I
D(1,1)K̃B,U

(z− x

h

)
W (z) dz,

i.e., all boundary terms vanish for su�ciently large n. To prove the assertion of the lemma we can now
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use equation (15) and follow the lines of the proof of Lemma 4 and obtain the estimate

sup
x∈[δ,1−δ]d

|Zn,2,d(x)− Zn,3,d(x)| = OP
(√

log(n)/
√
nh1 · . . . · hd

)
.

Lemma 5d. Assume that the assumptions of Theorem 2 hold. Then

|Zn,3(x)− Zn,5(x)| = OP
(
log(n) (h1 + . . .+ hd)

(2d−1)∨3
2 /

√
h1 · . . . · hd

)
,

where

Zn,5,d(x) :=
1

‖K̃B,U‖
√
h1 · . . . · hd

∫
I
K̃B,U

(z− x

h

)
dW (z).

Proof. Again we make an intermediate step by introducing a further process, Zn,4,d, that has the same

probability structure as Zn,3,d and de�ne

Zn,4,d(x) :=
1

‖K̃B,U‖
√∏d

j=1 hjgj

∫
I
K̃B,U

(z− x

h

)√
g1(z1) · . . . · gd(zd) dW (z).

By assumption, the design densities gj are continuously di�eentiable up to order (d− 1)∨ 1, j = 1, . . . , d.

By higher order Taylor expansion of the di�erence
√∏d

j=1 gj(xj + ujhj)−
√∏d

j=1 gj(xj) with the same

arguments applied in the proof of Lemma 5 we obtain the estimate

|Zn,3,d(x)− Zn,5,d(x)| =
(
log(n) (h1 + . . .+ hd)

(2d−1)∨3
2 /

√
h1 · . . . · hd

)
,

which holds almost surely and uniformly in x ∈ [δ, 1− δ]d.

The generalization of Lemma 6 and Lemma 7 and both proofs, as well as the further steps in the proofs

of Theorem 1 and Corollary 2 are straightforward and are therefore omitted.

2
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