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Abstract

When the dimension of the covariate space is high, semiparametric regression models
become indispensable to gain flexibility while avoiding the curse of dimensionality. These
considerations become even more important for incomplete data. In this work, we consider
the estimation of a semiparametric single-index model for conditional quantiles with right-
censored data. Iteratively applying the local-linear smoothing approach, we simultaneously
estimate the linear coefficients and the link function. We show that our estimating procedure
is consistent and we study its asymptotic distribution. Numerical results are used to show
the validity of our procedure and to illustrate the finite-sample performance of the proposed
estimators.

Keywords and Phrases: Weak convergence, kernel smoothing, conditional quantiles, multivari-
ate data, survival analysis, local-polynomial smoothing, bandwidth, asymptotic analysis.

1 Introduction

Quantile regression is a very attractive alternative to the classical mean regression model based
on the quadratic loss. While the latter provides only information about the central behavior
of the data, by varying the quantile level, the former provides a more complete picture, both
in the center and in the tails. At the same time, one does not need to impose restrictive
assumptions about the unknown data generating process. There are many cases where studying
the conditional mean is uninformative compared to the conditional upper or lower quantiles
representing more extreme situations. A nice illustration can be found in Elsner et al. (2008),
where the interest lies in the lifetime-maximum wind speeds of tropical cyclones. The authors
found that trends are near zero for the mean and lower quantiles (median and below), but are
upward for higher quantiles.

With the objective of providing a robust yet easily computable alternative to linear mean
models, Koenker and Bassett (1978) propose a method to estimate a linear quantile model
using the so-called check loss function. This seminal work inspired many researchers from dif-
ferent fields and the method has been generalized and adapted to a wide range of statistical
applications including fully nonparametric methods like local-polynomial or spline smoothing;
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see e.g., Yu and Jones (1998), Koenker et al. (1994). Although a completely nonparametric
approach is flexible, its application requires a large amount of data in order to overcome the
curse of dimensionality. While retaining much flexibility, semiparametric models avoid the
curse of dimensionality by imposing some structure on the model. One such structure is the
single-index model in which one assumes that the objective function depends linearly on the
covariates through an unknown link function. Many widely used parametric models can be seen
as particular cases of the single-index model. Examples are the linear regression model and
the generalized linear model. In a single-index model, no matter the number of covariates, the
curse of dimensionality is avoided because the nonparametric part (link function) is of dimen-
sion one. This model was investigated and successfully applied to many objective functions,
including the conditional mean and conditional quantiles. For some related papers, see, for
example, Ichimura (1993), Klein and Spady (1993), Härdle et al. (1993), Carroll et al. (1997),
Delecroix et al. (2003), Wu et al. (2010), Kong and Xia (2012) to cite just some of the relevant
papers.

The majority of the available literature is devoted to the case where the variable of interest,
say Y , is completely observed. This is not the case in many interesting applications including
survival analysis where censoring prevents the direct application of “classical” semi-parametric
methods because instead of observing Y , we only observe the minimum of Y and the censoring
variable. Compared to the uncensored case, the literature on single-index models dealing with
censoring is very sparse and, to the best of our knowledge, it only considers the case of the
conditional mean; see for example Lopez et al. (2013) and the references therein.

In this paper, we study the single index-model for the conditional quantile function when
the data are right-censored. We estimate the parameters of interest by constructing a weighted
check function in a way similar to the method of El Ghouch and Van Keilegom (2009). The
main difficulties here are the non-differentiability of the check loss function and the fact that
the weight function depends on the censoring distribution, which is unknown and needs to be
estimated and then plugged-in in the estimating equation. Our proposed local-linear estimation
method is based on an iterative procedure involving a

√
n-consistent estimator of the single-

index parameters. In every iteration, we need to maximize a large number of local equations.
We derive the asymptotic properties of the resulting quantile regression function under some
suitable sufficient conditions. The practical performance of the proposed method is examined
via Monte Carlo experiments. The estimator is shown to perform very well for data of moderate
size, even when the percentage of censoring is relatively high.

The remainder of the paper is organized as follows. Section 2 describes the estimation
procedure. The asymptotic properties such as the consistency and the asymptotic normality of
our semiparametric estimator are obtained in Section 3. The problem of selecting the bandwidth
parameter is tackled in Section 4. Simulation studies are presented in Section 5. We conclude
with two appendices containing the proofs and technical details.

2 Model and estimation

Suppose that Y is a non-negative response depending on a d-dimensional covariate X. The
object of interest in this paper is the τth conditional quantile of Y given X = x, τ ∈ (0, 1),
which we denote by Qτ (x). We impose a single-index structure on Qτ , i.e., we suppose that

Qτ (x) = mτ (x
Tβ0,τ ), (2.1)

where mτ : R → R is an unknown smooth link function and where β0,τ is a vector of unknown
coefficients in the unit sphere Sd−1 = {β ∈ R

d : ‖β‖ = 1}. For identifiability reasons, we
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suppose that the first coordinate of β0,τ is positive, where ‖ · ‖ denotes the Euclidean norm
on R

d. As long as it will not cause any ambiguity, we suppress the index τ and write m = mτ

and β0 = β0,τ . In model (2.1), estimating Qτ boils down to estimating m and β0.
For u ∈ R, let ρτ (u) = u{τ − 1(u < 0)} denote the check function. Then, it is well known

that β0 is given by

β0 = argmin
β∈Rd

E[ρτ{Y −m(XTβ)}] = argmin
β∈Rd

E
[
E[ρτ{Y −m(XTβ)}|XT β]

]
. (2.2)

The expressions E[ρτ{Y −m(XTβ)}] and E[ρτ{Y −m(XTβ)}|XT β] can be interpreted as the
expected and the conditional expected loss, respectively.

For the moment, let us suppose that there is no censoring and that we observe an i.i.d. sample
(Xi, Yi)

n
i=1 from (X,Y ). The following procedure for estimating β0 and m(v), where v ∈ R is

arbitrary, stems from Wu et al. (2010). The main idea is to define an empirical analogue of the
expected loss in (2.2), which can be minimized subsequently. Let β ∈ Sd−1 be given. Then,
assuming that m is sufficiently smooth and that XT

i β is close to v, a Taylor expansion yields

m(XT
i β) ≈ m(v) +m′(v)(XT

i β − v) = a+ b(XT
i β − v),

where a = m(v) and b = m′(v). Thus,

n∑

i=1

ρτ
{
Yi − a− b(XT

i β − v)
}
K{(XT

i β − v)/h} (2.3)

with some kernel function K and a bandwidth h, represents an empirical analogue of the
conditional expected loss in (2.2). Note that, for given β = β0, minimizing (2.3) with respect to
a and b yields oracle estimators for m(v) and m′(v), respectively. To get an empirical analogue
of E[ρτ{Y − m(XTβ)}], we need to average (2.3) over v. Hence, setting v = vj = XT

j β, we
obtain

n∑

j=1

n∑

i=1

ρτ
{
Yi − aj − bj(X

T
ijβ)

}
wij(β), (2.4)

where Xij = Xi −Xj and where

wij(β) =

{
n∑

i=1

K

(
XT

ijβ

h

)}−1

K

(
XT

ijβ

h

)
.

By minimizing the expression in (2.4) with respect to (aj , bj)
n
j=1 and β we obtain estimators of

(m(vj),m
′(vj))nj=1 and β0. As this joint minimization is not feasible, Wu et al. (2010) proposed

an iterative procedure based on successive estimation of β0 and (m(v),m′(v)), for any given
v ∈ R. In the present paper, we adapt their approach to the case where the observations of the
response variable may be censored.

In the presence of censoring, we do not fully observe the response variables Yi. Instead,
we observe a sequence of i.i.d. triplets (Xi, Zi,∆i)

n
i=1 from (X,Z,∆), where Z = min(Y,C),

∆ = 1(Y ≤ C) and C ≥ 0 denotes a censoring variable. In the present paper we will assume
that

(C) C is independent of (X,Y ).
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Let FC denote the cumulative distribution function (c.d.f.) of C. Then, some simple calcu-
lations based on the tower property of conditional expectations show that, for any measurable
functions h : R → R and g : Rd → R

p (p ≥ 1),

E[h(Y ) | g(X)] = E

[
h(Z)∆

1− FC(Z−)

∣∣∣∣ g(X)

]
. (2.5)

Therefore, we can write E
[
ρτ{Y − a− b(XTβ − v)} |XT β

]
as

E
[
τ(Y − Z)|XTβ

]
+ E

[
{Z − a− b(XTβ − v)}

[
τ −Q1{Z < a+ b(XTβ − v)}

] ∣∣∣XTβ
]
,

where Q = ∆/{1 − FC(Z−)}, and since the first term does not depend on a and b and only
minimization is concerned, this suggests to replace (2.3) by

n∑

i=1

{Zi − a− b(XT
i β − v)}

[
τ −Qi1{Zi < a+ b(XT

i β − v)}
]
K

(
XT

i β − v

h

)
,

where Qi = ∆i/{1 − FC(Zi−)}. Since the c.d.f. FC of the censoring variable is unknown, we
need to replace it by some suitable estimator F̂C . Given β ∈ Sd−1, this suggests to estimate
m(v) and m′(v) by m̂(v, β) = â(v, β) and m̂(v, β) = b̂(v, β), where

(â(v, β), b̂(v, β)) = argmin
a,b∈R

n∑

i=1

{Zi − a− b(XT
i β − v)}

×
[
τ − Q̂i1{Zi < a+ b(XT

i β − v)}
]
K

(
XT

i β − v

h

)
, (2.6)

where Q̂i = ∆i/{1− F̂C(Zi−)}. Still, it remains to construct an estimator for β0. To do so, we
proceed as in the uncensored case and define the following empirical analogue of (2.4):

n∑

j=1

n∑

i=1

{Zi − aj − bj(X
T
ijβ)}

[
τ − Q̂i1{Zi < aj + bj(X

T
ijβ)}

]
wij(β).

As indicated above, the joint minimization of the resulting expression with respect to (aj , bj)
n
j=1

and β is unfeasible, hence we propose the following iterative procedure adapted from Wu et al.
(2010).

Step 1. Start with an initial estimator β̂(0) of β0 and set βiter = β̂(0) (see below for a suitable
example on how to obtain β̂(0)).

Step 2. For j = 1, . . . , n, let

(âj, b̂j) = argmin
a,b∈R

n∑

i=1

{Zi − a− b(XT
ijβiter)}

[
τ − Q̂i1{Zi < a+ b(XT

ijβiter)}
]
wij(βiter).

Step 3. Using the estimates (âj , b̂j)
n
j=1, set

β⋆ = argmin
β∈Rd

n∑

j=1

n∑

i=1

{Zi − âj − b̂j(X
T
ijβ)}

[
τ − Q̂i1{Zi < âj + b̂j(X

T
ijβ)}

]
wij(βiter)

and update βiter by setting βiter = β⋆/‖β⋆‖.
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Step 4. Repeat Steps 2 and 3 until the difference between two consecutive estimations of β is
smaller than a given threshold and define the final estimate β̂ by setting β̂ = βiter.

Step 5. For any desired index value v ∈ R, estimate m(v) and m′(v) by m̂(v, β̂) = â(β̂) and
m̂′(v, β̂) = b̂(β̂), the latter estimators being defined in (2.6). For any desired index value
x ∈ R

d, estimate Qτ (x) by m̂(xT β̂, β̂).

Step 1 requires an initial estimator for β0. We propose to use an estimator adapted from the
OPG (outer product of gradients)-method in the mean regression context in Xia et al. (2002).
The underlying idea is as follows: For any x ∈ R

d, we have ∂m(xTβ0)/∂x = m′(xTβ0)β0.
Hence, the partial derivatives of m(xTβ0) with respect to x are parallel to β0. For j = 1, . . . , n,
let bj = m′(XT

j β0)β0. One can easily see that the (standardized) eigenvector corresponding

to the largest eigenvalue of Vn = n−1
∑n

i=1 bjb
T
j is given by β0, which suggests to estimate β0

by replacing bj in the definition of Vn by suitable estimators b̂j, that is, we define β̂0 as the

(standardized) eigenvector corresponding to the largest eigenvalue of V̂n = n−1
∑n

j=1 b̂j b̂
T
j . For

the estimation of bj , we propose to use the local-polynomial estimators

(âj , b̂
T
j ) = argmin

(a,bT )∈Rd+1

n∑

i=1

{Zi − a− bTXij}
[
τ − Q̂i1{Zi < a+ bTXij)}

]
K(Xij/h),

where K denotes a d-dimensional kernel.

3 Asymptotic results

For fixed v ∈ R, suppose that there exist neighborhoods Uβ0
, Um(v) and Uv of β0,m(v) and v,

respectively, such that the following regularity conditions hold:

(A1) The kernel K is a density function on R which is symmetric around 0, has a compact
support denoted by supp(K) and is differentiable with a bounded derivative.

(A2) The function m is twice continuously differentiable on Uv with bounded derivatives.

(A3) (i) The support of X, denoted by supp(X), is contained in a compact subset DX of Rd.

(ii) For any β ∈ Uβ0
, the random variable XTβ has a density fXTβ. The function Uβ0

×
Uv → R, (β, u) 7→ fXT β(u) is bounded and Lipschitz-continuous at (β0, v).

(A4) (i) The conditional distribution FY |X of Y given X has a conditional density fY |X(·|·)
that is bounded on Um(v) × supp(X).

(ii) For any β ∈ Uβ0
, the conditional distribution of Y given XTβ has a conditional density

fY |XT β(·|·). The function Uβ0
× Um(v) × Uv → R, (β, y, u) 7→ fY |XT β (y | u) is bounded

and Lipschitz-continuous at (β0,m(v), v).

(iii) Uβ0
×Um(v) ×Uv → R, (β, y, u) 7→ fY |XTβ(y|u) is partially differentiable with respect

to y and the derivative, denoted by f ′
Y |XTβ

(y|u), is bounded.

(A5) The point v ∈ R satisfies FZ{m(v)} < 1, where FZ denotes the c.d.f. of Z.

Before we formulate the main results, let us introduce some additional notation. For β ∈ R
d

and u ∈ R, let Xi(β, u) =
(
1, (XT

i β − u)/h
)T

, Zi(β, u) = Zi − m(u) − m′(u)(XT
i β − u) and
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Ki(β, u) = K{(XT
i β − u)/h}. Moreover, set K̄j =

∫
R
ujK(u) du and K̄ ′

j =
∫
R
ujK2(u) du for

j ∈ {0, 1, 2, 3} and let

K̄ =

(
K̄0 K̄1

K̄1 K̄2

)
, K̄ ′ =

(
K̄ ′

0 K̄ ′
1

K̄ ′
1 K̄ ′

2

)
.

For some constant M > 0, let UM denote the closed d-dimensional ball of radius M with
center 0, i.e., UM = {γ ∈ R

d : ‖γ‖ ≤ M}. Finally, for β ∈ R
d and u ∈ R (usually considered to

be close to β0 and v), let

Mn(u, β) =
√
nh

{(
m̂(u, β) −m(v)

h{m̂′(u, β) −m′(v)}

)
− h2

2
K̄−1

(
K̄2

K̄3

)
m′′(v)

}

with m̂(u, β) and m̂′(u, β) as defined in (2.6).

Theorem 3.1. Suppose that h = h(n) → 0 satisfies limn→∞ nh3 = ∞ and nh5 = O(1) as
n → ∞. Then, for any v ∈ R that satisfies conditions (A1)–(A5) and for any M > 0,

sup
(γ,κ)∈UM×[−M,M ]

∥∥∥∥Mn(v
κ
n, β

γ
n)−V −1 1√

nh

n∑

i=1

[
τ−Qi1

{
Zi < m(XT

i β0)
} ]

×Xi(β0, v)Ki(β0, v)

∥∥∥∥

= oP (1),

where vκn = v + κ/
√
n and βγ

n = β0 + γ/
√
n and where V =

[
fY |XTβ0

{m(v) | v} fXTβ0
(v)
]
× K̄.

Note that the sum between the norm signs in Theorem 3.1 consists of centered summands
as a consequence of (2.5). The uniformity in γ and κ in Theorem 3.1 is essential for the next
corollary which can be regarded as the main result of this paper: it states that the final estimator
for Qτ (x) in Step 5 is asymptotically normally distributed.

Corollary 3.2. Let β̂n ∈ Sd−1 be an estimator for β0 such that γ̂n =
√
n(β̂n − β0) = OP (1).

Suppose that the conditions on the bandwidth of Theorem 3.1 are met. Then, for any v ∈ R that
satisfies conditions (A1)-(A5) and for any x ∈ R

d such that v = xTβ0 satisfies conditions (A1)–
(A5),

Mn(v, β̂n) N2

(
0, σ2(v)K̄−1K̄ ′K̄−1

)
and Mn(x

T β̂n, β̂n) N2

(
0, σ2(xTβ0)K̄

−1K̄ ′K̄−1
)
,

where, for any v ∈ R,

σ2(v) =
Φβ0

{m(v) | v} − τ2

f2
Y |XTβ0

{m(v) | v} fXT β0
(v)

and where, for any u, v ∈ R,

Φβ0
(u | v) = E

[
1(Y < u)

1− FC(Y−)

∣∣∣XTβ0 = v

]
.

4 Bandwidth selection

The practical performance of any nonparametric regression technique depends crucially on the
choice of smoothing parameters. A (theoretical) local optimal bandwidth can be derived from
the result in Corollary 3.2 by minimizing the asymptotic mean squared error of m̂(v, β̂) with
respect to h, yielding

hoptn = hoptn (v) =

{
σ2(v)K̄0

{m′′(v)}2K̄2
2

}1/5

n−1/5.
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Unfortunately, this expression is not directly applicable in practice, since it depends on sev-
eral unknown quantities. Even in the simpler non-censored case, the derivation of reliable
estimators for the respective quantities is delicate. For that reason, alternative procedures for
the bandwidth selection have been proposed, see, e.g., Yu and Jones (1998) or Kong and Xia
(2012) for procedures relying on the mean-regression case. However, these procedures are not
directly applicable in the presence of censoring. For that reason, we propose to use the follow-
ing leave-one out cross validation (CV) procedure (see also Zheng and Yang, 1998; Leung, 2005;
El Ghouch and Van Keilegom, 2009):

(CV1) For a given h, estimate β̂ = β̂(h) as in Step 1-4 in Section 2. In particular, store the
values for Q̂i.

(CV2) For any j = 1, . . . , n, set m̂−j,h(X
T
j β̂) = â−j(X

T
j β̂, β̂), where, for any v ∈ R and β ∈ Sd−1,

(
â−j(v, β), b̂−j(v, β)

)
= argmin

a,b∈R

∑

i=1,...,n
i6=j

{Zi − a− b(XT
i β − v)}

×
[
τ − Q̂i1{Zi < a+ b(XT

i β − v)}
]
K

(
XT

i β − v

h

)

denotes the estimator based on all observations except the jth.

(CV3) For j = 1, . . . , n, set ĉv−j,h = |m̂−j,h(X
T
j β̂) − ZjQ̂j| and let CV (h) denote the sample

median of ĉv−1,h, . . . , ĉv−n,h.

(CV4) Repeat the first three steps for several bandwidths and set hCV
n = argmin hCV (h).

We use here the absolute CV instead of the classical and very popular least squares CV because
it leads to a more robust smoothing estimator; see Wang and Scott (1994). This is particularly
interesting in our case since the transformed working data Zj∆j/(1 − F̂C(Zj−)) may be noisy
and because robustness is one of the motivations behind considering quantile regression.
In Section 5, we will show that the estimator based on the cross-validation method has a good
finite-sample performance.

5 Numerical results

In this section, we assess the finite-sample performance of the 5-step estimator form(v). For rea-
sons of numerical stability we constrain the minimization in Step 2 to a compact set [−M,M ]2,
with M = 20. Additionally, we stop the algorithm in Step 4 after at most 15 iterations, if con-
vergence has not occurred until then. We perform 1, 000 repetitions for two different models,
two sample sizes (n = 100 and n = 200), two levels of censoring (on average 25% and 50%),
three values of τ ∈ {0.3, 0.5, 0.7}, 15 different bandwidths h ∈ {0.1, 0.15, . . . , 0.75, 0.8} and 32
values for v ∈ {0.05, 0.1, . . . , 1.55, 1.6}. Additionally, we investigate the performance of the
cross-validation method described in Section 4. The results are reported only partially. The
considered models are as follows.

Model 1 (location model).

For i = 1, . . . , n, we consider

Yi = exp(XT
i β0) + εi, Xi = (Xi,1, . . . ,Xi,d),

where Xi,j is i.i.d. uniform on (0, 1) for i = 1, . . . , n and j = 1, . . . , d, and where εi is i.i.d.
standard exponential. During the simulation study, we fix d = 3 and β0 = 14−1/2 × (1, 2, 3).
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Figure 1: Probability of censoring v 7→ Pr(Y > C |XTβ0 = v) for Model 1 (left figure) and
Model 2 (right figure). The average probability of censoring Pr(Y > C) is 25% for the black
curve (λ = 0.088 or λ = 0.071) and 50% for the grey curve (λ = 0.218 or λ = 0.180).

Note that the τth conditional quantile of Yi given Xi = x is given by exp(xTβ0) + qε(τ), where
qε(τ) = − log(1 − τ) denotes the τth quantile of the standard exponential distribution. In
particular, the conditional quantile curves for different values of τ are parallel.

The censoring variables are supposed to be i.i.d. exponential with parameter λ, independent
of Xi and εi. We consider two settings for the parameter: λ = 0.218 which corresponds to
a proportion of censoring of about 50%, and λ = 0.088 which corresponds to a proportion of
censoring of about 25%. Note that the probability of censoring at a given X = x is given by

Pr(Y > C |X = x) = Pr{C − ε < exp(xTβ0)} = 1− e−λex
T β0

1 + λ
.

The corresponding curve v 7→ Pr(Y > C |XTβ0 = v) is depicted in Figure 1 for λ ∈ {0.088, 0.218}.
From these graphs, we expect the estimator m̂(v, β̂) to have worse performance for large values
of v, i.e., for values that are close to 6/

√
14 ≈ 1.6036, the upper bound of the support of XTβ0.

Model 2 (location-scale model).

For i = 1, . . . , n, we consider

Yi = exp(XT
i β0) +

{
sin
(
2πXT

i β0
)
+ 2
}
εi, Xi = (Xi,1, . . . ,Xi,d),

where Xi,j , β0 and εi are as in Model 1. Note that the τth conditional quantile of Yi given
Xi = x is given by exp(xTβ0) + {sin(2πxTβ0) + 2} × qε(τ), where qε(τ) = − log(1− τ) denotes
the τth quantile of the standard exponential distribution.

Again, the censoring variables are supposed to be i.i.d. exponential with parameter λ, in-
dependent of Xi and εi. In this case, the probability of censoring at a given X = x is given
by

Pr(Y > C |X = x) = 1− e−λex
T β0

1 + λ{sin(2πxTβ0) + 2} .

The corresponding curve v 7→ Pr(Y > C |XTβ0 = v) is depicted in Figure 1 for λ = 0.071 (25%
of censoring on average) and λ = 0.180 (50% of censoring on average).
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The results of our simulation study are partially reported in Figures 2–4 and in Table 1.
Figure 2 serves to illustrate the performance of the 4-step estimator for β0. We restrict ourselves
to Model 1 with n = 200, τ = 0.5 and an average censoring proportion of 25%. The left picture
shows boxplots of the estimator β̂ for various bandwidths. The right picture shows the trimmed
squared bias, variance and MSE, summed over the coordinates of β̂. Here, trimming means that
we discard both the largest and the smallest 2.5% of the simulation outcomes, which results
in a more robust measure of the quality of the estimator β̂. This appears to be advisable in
this specific framework, since the O(n) optimization routines in each iteration step happen to
yield very unlikely results with a small probability. The results are quite promising and show
that the estimator β̂ is very robust with respect to the bandwidth, provided it is chosen larger
than 0.2.

Under the same setting as for Figure 2, Figure 3 illustrates the performance of the estimator
m̂(v, β̂) for fixed v = 0.8 and various bandwidths. Again, we opt for robust measures of the
quality of the estimator: the left picture shows boxplots of the absolute estimation error, whereas
the right one shows the trimmed squared bias, variance and MSE (solid lines). As expected,
the bias increases with h, whereas the variance decreases. The minimum value of the MSE is
attained at h = 0.35. Finally, the dashed lines in the right picture depict trimmed squared bias,
variance and MSE for the oracle estimator of m(v) which is based on the true value of β0; see
equation (2.6). Note that the oracle estimator is unfeasible but may serve as a benchmark. We
observe that it clearly performs better than the 5-step estimator m̂(v, β̂), while at the same
time showing a similar qualitative behavior in terms of the MSE, variance and bias curves.

Figure 4 shows results on the performance of m̂ for a fixed bandwidth and for various values
of v. The left picture concerns Model 1 with bandwidth h = 0.35 as suggested by the results in
Figure 3. In the right picture, we consider Model 2 with n = 200, τ = 0.5, a proportion of 25%
of censoring and with h = 0.2 chosen by the same criteria as applied for Model 1 (the results
are not shown here for the sake of brevity). Again, the results are as expected: the bandwidth
is chosen optimally for v = 0.8, hence the results are better at that point. As we get away from
this center point, the performance gets worse and this phenomena is more pronounced for those
values of v for which the probability of censoring depicted in Figure 1 is higher.

A global picture of the impact of the choice of n, τ , the censoring proportion and the model
can be drawn from the results in Table 1. For various settings, we state the minimal median
absolute estimation error (MAE) multiplied by 10, where “minimal” refers to minimization
over the bandwidths h ∈ {0.1, 0.15 . . . , 0.75, 0.8}. As expected, results get better for the simpler
model (Model 1), larger sample sizes, smaller values of τ and for those v for which the probability
of censoring Pr(Y > C |XTβ0 = v) as plotted in Figure 1 is smaller.

Finally, Table 2 shows simulation results on the cross-validation method for choosing the
optimal bandwidth as described in Section 4. For the sake of brevity, we only consider Model 1
and a proportion of censoring of 25%. In this case, the results in the first column of Table 1
may serve as a benchmark. We measure the quality of the cross validation methods in terms of
the “relative efficiency” with respect to the minimal median absolute error, defined as

RE =
minh∈{0.1,0.15,...,0.8}MAE{m̂(v, β̂, h)}

MAE{m̂(v, β̂, hCV
n )}

. (5.1)

The results in Table 2 show that, overall, the cross-validation method has a good performance,
with values of RE not falling below 0.77. For high levels of τ , the estimator based on hCV

n even
outperforms the estimator based on any fixed bandwidth h ∈ {0.1, 0.15, . . . , 0.8}.
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Figure 2: Simulation results for the estimation of β0 in Model 1, for τ = 0.5, n = 200, 25%
of censoring on average and based on 1000 repetitions. Left: boxplots on the estimation of
each coordinate of β0 (without depicting outliers), the red lines are the true values of β0 =
(1, 2, 3)/

√
14. Right: sum of trimmed squared bias (black), sum of trimmed variance (red) and

sum of trimmed MSE (green) over the three coordinates. Here, “trimmed” means that both
the largest and the smallest 2.5% of the simulation outcomes are discarded.

0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

Fixed v= 0.8

Bandwidth h

0.2 0.3 0.4 0.5 0.6 0.7

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Fixed v= 0.8

Bandwidth h

Figure 3: Simulation results for the estimation of m(v) in Model 1, for τ = 0.5, n = 200, 25%
of censoring on average, fixed v = 0.8 and based on 1000 repetitions. Left: boxplots of the
absolute estimation error. Right: trimmed squared bias (light grey lines), variance (dark grey)
and MSE (black), based on discarding both the largest and the smallest 2.5% of the simulation
outcomes. The dotted lines correspond to the oracle estimator of m which is based on the true
value of β0 instead of its estimator β̂.
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Figure 4: Boxplots of the estimator m̂(v, β̂) for various v. Both pictures are based on τ = 0.5,
n = 200, 25% of censoring on average and 1000 repetitions. Left: Model 1 with fixed h = 0.35,
right: Model 2 with fixed h = 0.2.

MAE Model 1 MAE Model 2

n Av. Cens. τ v = 0.6 v = 0.8 v = 1 v = 0.6 v = 0.8 v = 1

100 25% 0.3 0.782 0.758 0.943 1.339 1.163 1.695
0.5 1.218 1.286 1.598 2.094 2.041 2.860
0.7 2.144 2.212 3.036 3.858 3.416 5.624

50% 0.3 0.991 1.015 1.212 1.606 1.621 2.163
0.5 1.651 1.840 2.292 2.766 3.018 3.983
0.7 3.448 3.997 5.601 5.742 6.025 10.066

200 25% 0.3 0.532 0.561 0.695 0.939 0.817 1.222
0.5 0.877 0.922 1.113 1.528 1.267 1.973
0.7 1.549 1.618 2.048 2.621 2.474 3.797

50% 0.3 0.627 0.684 0.845 1.056 0.977 1.490
0.5 1.082 1.266 1.579 1.860 1.984 2.693
0.7 2.323 2.727 3.719 3.959 4.381 6.915

Table 1: Simulation results for the estimation of m(v) for v ∈ {0.6, 0.8, 1}, n ∈ {100, 200},
an average censoring rate in {25%, 50%}, τ ∈ {0.3, 0.5, 0.7} and for Model 1 and 2 based on
1000 repetitions each. Stated is the minimal value of the median average error (MAE) over
bandwidths in {0.1, 0.15, . . . , 0.75, 0.8}, multiplied by 10.
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n = 100 n = 200

τ v = 0.6 v = 0.8 v = 1 v = 0.6 v = 0.8 v = 1

0.3 0.820 0.772 0.857 0.780 0.814 0.864
0.5 0.834 0.821 0.887 0.829 0.826 0.916
0.7 0.951 0.992 1.101 0.992 1.013 1.145

Table 2: Relative efficiency RE (see (5.1)) of our estimator with a bandwidth chosen by the
cross-validation method as given in Section 4. Results are for v ∈ {0.6, 0.8, 1}, n ∈ {100, 200},
an average censoring rate of 25%, τ ∈ {0.3, 0.5, 0.7} and for Model 1 based on 1000 repetitions
each.

A Appendix A : Proofs of the main results

Proof of Theorem 3.1. Recall that Qi = ∆i/{1 − FC(Zi−)} and Q̂i = ∆i/{1 − F̂C(Zi−)} and,
for t ∈ R, set

ζi(t) = t
{
τ −Qi1(t < 0)

}
, ζ̂i(t) = t

{
τ − Q̂i1(t < 0)

}
.

Note that (m̂(u, β), m̂′(u, β)) = (â(u, β), b̂(u, β)) as defined in (2.6) can be written as the mini-
mizer of the expression

n∑

i=1

ζ̂i{Zi − a− b(XT
i β − u)}Ki(β, u) (A.1)

with respect to a and b, where Ki(β, u) = K{(XT
i β − u)/h} . Furthermore, for β ∈ R

d and
u ∈ R, set

Θn(β, u) =
√
nh

(
m̂(u, β)−m(u)

h{m̂′(u, β)−m′(u)}

)
.

Note that Θn(β
γ
n, vκn) is, up to the bias term and up to a negligible term arising from replacing

m(vκn) and m′(vκn) by m(v) and m′(v), respectively, the expression of primary interest in Theo-

rem 3.1. Recall that Xi(β, u) =
(
1, (XT

i β − u)/h
)T

and Zi(β, u) = Zi−m(u)−m′(u)(XT
i β−u)

and define, for Θ ∈ R
2,

Ln(Θ, β, u) =
n∑

i=1

[
ζi

{
Zi(β, u)−

ΘTXi(β, u)√
nh

}
− ζi{Zi(β, u)}

]
Ki(β, u), (A.2)

L̂n(Θ, β, u) =

n∑

i=1

[
ζ̂i

{
Zi(β, u)−

ΘTXi(β, u)√
nh

}
− ζ̂i{Zi(β, u)}

]
Ki(β, u). (A.3)

Observing (A.1), one can easily show that, for any β ∈ R
d and u ∈ R,

Θn(β, u) = argmin
Θ∈R2

L̂n(Θ, β, u).

We are going to prove Theorem 3.1 by an application of Theorem 2 in Kato (2009) and begin
by showing that Θ 7→ L̂n(Θ, βγ

n, vκn) is convex, for any γ ∈ UM and κ ∈ [−M,M ].
Since sums of convex functions are convex, it suffices to show that the ith summand in the

definition of L̂n(Θ, βγ
n, vκn) is convex. Since Ki(β

γ
n, vκn) is independent of Θ, it is even sufficient

to prove convexity of

Θ 7→ L̂n,i(Θ) = ζ̂i

{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}
− ζ̂i{Zi(β

γ
n, v

κ
n)}.
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Now, we can decompose

L̂n,i(Θ) = −Q̂i

{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}
1

{
Zi(β

γ
n, v

κ
n) <

ΘTXi(β
γ
n, vκn)√

nh

}

+ Q̂i ×Zi(β
γ
n, v

κ
n)1{Zi(β

γ
n, v

κ
n) < 0} − τ

ΘTXi(β
γ
n, vκn)√

nh
.

Since t 7→ −t1(t < 0) is convex and since Θ 7→ Zi(β
γ
n, vκn)− {ΘTXi(β

γ
n, vκn)}/

√
nh is linear, we

see that the first summand on the right of this decomposition is convex. The second one does
not depend on Θ and the third one is linear, and hence also convex. This proves the desired
convexity.

Now, let us show (10) in Kato (2009); more precisely, that

sup
(γ,κ)∈UM×[−M,M ]

∣∣∣∣L̂n(Θ, βγ
n, v

κ
n) + ΘTUn − 1

2
ΘTVΘ

∣∣∣∣ = oP (1), (A.4)

where

Un =
1√
nh

n∑

i=1

[
τ −Qi1

{
Zi < m(XT

i β0)
} ]

Xi(β0)Ki(β0)

+

√
nh5

2
fY |XT β0

{m(v) | v}m′′(v)fXT β0
(v)

(
K̄2

K̄3

)
. (A.5)

First of all, as a consequence of Lemma B.1 and the fact that nh5 = O(1) for n → ∞, we get

sup
(γ,κ)∈UM×[−M,M ]

|L̂n(Θ, βγ
n, v

κ
n)− Ln(Θ, βγ

n, v
κ
n)| = oP (1). (A.6)

Moreover, Lemma B.2 yields

sup
(γ,κ)∈UM×[−M,M ]

|Ln(Θ, βγ
n, v

κ
n)− Ln(Θ, β0, v)| = oP (1). (A.7)

Finally, observe that we can write

Ln(Θ, β0, v) = ΘTWn(β0, v) + E[Ln(Θ, β0, v)−ΘTWn(β0, v) | An(β0)] +Rn(Θ, β0, v),

where, for β ∈ R
d, An(β) denotes the sigma-field generated by XT

1 β, . . . ,X
T
n β and where, for

u ∈ R,

Wn(β, u) = − 1√
nh

n∑

i=1

[
τ −Qi1 {Zi(β, u) < 0}

]
Xi(β, u)Ki(β, u) (A.8)

and

Rn(Θ, β, u) = Ln(Θ, β, u)− E[Ln(Θ, β, u) | An(β)]

−
{
ΘTWn(β, u) − E[ΘTWn(β, u) | An(β, u)]

}
. (A.9)

Then, it follows from Lemma B.6, Lemma B.4 and Lemma B.5 that

Ln(Θ, β0, v) = −ΘTUn +
1

2
ΘTVΘ+ oP (1). (A.10)

Hence, (A.4) is a mere consequence of (A.6), (A.7) and (A.10).
Finally, observing that Un is constant in (γ, κ), that its dominating sum converges to a

normal distribution and noting that nh5 = O(1), we easily obtain that Un satisfies (11) in Kato
(2009). Therefore, an application of Kato’s Theorem 2 finalizes the proof.
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Proof of Corollary 3.2. Let us first show that ‖Mn(v, β̂n)−An(v)‖ = oP (1), where

An(v) = V −1 1√
nh

n∑

i=1

[
τ −Qi1

{
Zi < m(XT

i β0)
} ]

×Xi(β0, v)Ki(β0, v).

Let ε, η > 0 be given. Since γ̂n = OP (1), we can choose M > 0 large enough such that

Pr{γ̂n 6∈ UM} < η/2 for all n ∈ N. Therefore, since βγ̂n
n = β̂n,

Pr(‖Mn(v, β̂n)−An(v)‖ > ε) ≤ Pr{‖Mn(v, β
γ̂n
n )−An(v)‖ > ε, γ̂n ∈ UM}+ η/2

≤ Pr( sup
γ∈UM

‖Mn(v, β
γ
n)−An(v)‖ > ε) + η/2 ≤ η

for sufficiently large n by Theorem 3.1. One can proceed analogously to prove that ‖Mn(x
T β̂n, β̂n)−

An(x
Tβ0)‖ = oP (1).

Now, let us show that An(v)  N2

(
0, σ2(v)K̄−1K̄ ′K̄−1

)
. By iterated expectation, each

entry of the covariance matrix Var{V An(v)} can be written as

Dj = h−1
E

[
E

[[
τ −Qi1{Zi < m(XT

i β0)}
]2 ∣∣XT

i β0

](XT
i β0 − v

h

)j

K2

(
XT

i β0 − v

h

)]
,

for some j ∈ {0, 1, 2}. Note that (2.5) implies

E[Qi1{Zi < m(XT
i β0)} |XT

i β0] = FY |XTβ0
{m(XT

i β0) |XT
i β0} = τ,

E[Q2
i1{Zi < m(XT

i β0)} |XT
i β0] = Φβ0

{m(XT
i β0) |XT

i β0},
where the last equality in the first line follows from the continuity of the map y 7→ FY |XTβ0

(y |xTβ0).
Therefore, we can write

Dj = h−1

∫ [
Φβ0

{m(u) |u} − τ2
](u− v

h

)j

K

(
u− v

h

)
fXT β0

(u) du

=

∫ [
Φβ0

{m(v + hw) | v + hw} − τ2
]
wjK (w) fXTβ0

(v + hw) dw

=
[
Φβ0

{m(v) | v} − τ2
]
× fXTβ0

(v) × K̄ ′
j + o(1),

where the last equality follows from the continuity of fXTβ0
and Φβ0

(in both arguments).
Then, the assertion of the corollary follows from the classical central limit theorem for row-wise
independent triangular arrays.

B Appendix B : Auxiliary results for the proof of Theorem 3.1

Lemma B.1. Under the conditions of Theorem 3.1,

sup
(γ,κ)∈UM×[−M,M ]

∣∣∣L̂n(Θ, βγ
n, v

κ
n)− Ln(Θ, βγ

n, v
κ
n)
∣∣∣ = OP (

√
h log n).

Proof. We can write L̂n(Θ, βγ
n , vκn)− Ln(Θ, βγ

n , vκn) = Rn1 +Rn2, where

Rn1 =
n∑

i=1

{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}

×
[
1

{
Zi(β

γ
n, v

κ
n) <

ΘTXi(β
γ
n, vκn)√

nh

}
− 1 {Zi(β

γ
n, v

κ
n) < 0}

]
× (Qi − Q̂i)Ki(β

γ
n, v

κ
n)

Rn2 = −
n∑

i=1

ΘTXi(β
γ
n, vκn)√

nh
1 {Zi(β

γ
n, v

κ
n) < 0} (Qi − Q̂i)Ki(β

γ
n, v

κ
n).
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Let us begin by considering Rn1. Clearly,

∣∣∣∣1
{
Zi(β

γ
n, v

κ
n) <

ΘTXi(β
γ
n, vκn)√

nh

}
− 1 {Zi(β

γ
n, v

κ
n) < 0}

∣∣∣∣

≤ 1

{
−
∣∣∣∣
ΘTXi(β

γ
n, vκn)√

nh

∣∣∣∣ ≤ Zi(β
γ
n, v

κ
n) <

∣∣∣∣
ΘTXi(β

γ
n, vκn)√

nh

∣∣∣∣
}
, (B.1)

whence we can bound |Rn1| from above by

n∑

i=1

2

∣∣∣∣
ΘTXi(β

γ
n, vκn)√

nh

∣∣∣∣1
{
|Zi(β

γ
n, v

κ
n)| ≤

∣∣∣∣
ΘTXi(β

γ
n, vκn)√

nh

∣∣∣∣
}
|Qi − Q̂i|Ki(β

γ
n, v

κ
n).

Let C0 =
√

1 + | sup(suppK)|2. Then, the expression on the right-hand side of the last formula
can be bounded by

2C0‖Θ‖√
nh

n∑

i=1

1

{
|Zi(β

γ
n, v

κ
n)| ≤

C0‖Θ‖√
nh

}
|Qi − Q̂i|Ki(β

γ
n, v

κ
n).

Furthermore, for (XT
i β

γ
n − vκn)/h ∈ supp(K), the inequality |Zi(β

γ
n, vκn)| ≤ C0‖Θ‖/

√
nh implies

that Zi ≤ m(v) + C ′
0h + C0‖Θ‖/

√
nh, with some universal constant C ′

0. Therefore, we can
proceed to bound |Rn1| by

2C0‖Θ‖√
nh

n∑

i=1

1

{
Zi ≤ m(v) + C ′

0h+
C0‖Θ‖√

nh

}
|Qi − Q̂i|Ki(β

γ
n, v

κ
n)

=
2C0‖Θ‖√

nh

n∑

i=1

1

{
Zi ≤ m(v) + C ′

0h+
C0‖Θ‖√

nh

}
Ki(β

γ
n, v

κ
n)

×∆i
|F̂C(Zi−)− FC(Zi−)|

{1− FC(Zi−)}{1 − F̂C(Zi−)}
.

As FZ{m(v)} < 1 by condition (A5), we may choose T such that m(v) < T < inf{x ∈ R :

FZ(x) = 1}. Then, for n large enough, we have m(v) +C ′
0h+ C0‖Θ‖√

nh
≤ T . Finally, since

sup
x≤T

|F̂C(x−)− FC(x−)|
{1− FC(x−)}{1 − F̂C(x−)}

= OP

(√
log n

n

)

by the results in Lo and Singh (1986), and since EK
{
(XT

i β
γ
n − vκn)/h

}
= O(h) uniformly in γ

and κ, we obtain that sup(γ,κ)∈UM×[−M,M ] |Rn1| is of order OP (
√
h log n), as asserted.

To see that also sup(γ,κ)∈UM×[−M,M ] |Rn2| = OP (
√
h log n), note that (XT

i β
γ
n − vκn)/h ∈

suppK and Zi(β
γ
n, vκn) < 0 implies that Zi ≤ m(v) + C ′

0h, with some universal constant C ′
0.

The remaining argumentation is similar as for Rn1.

Lemma B.2. Under the conditions of Theorem 3.1,

sup
(γ,κ)∈UM×[−M,M ]

|Ln(Θ, βγ
n, v

κ
n)− Ln(Θ, β0, v)| = oP (1),

where Ln is defined in (A.2).
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Proof. Write Hn(Θ, γ, κ) := Ln(Θ, βγ
n, vκn)− Ln(Θ, β0, v) =

∑n
i=1Hn,i(Θ, γ, κ), where

Hn,i(Θ, γ, κ) =

[
ζi

{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}
− ζi{Zi(β

γ
n, v

κ
n)}
]
Ki(β

γ
n, v

κ
n)

−
[
ζi

{
Zi(β0, v)−

ΘTXi(β0, v)√
nh

}
− ζi{Zi(β0, v)}

]
Ki(β0, v).

In the following, let C denote some universal constant that is independent of (γ, κ) ∈ UM ×
[−M,M ] and i = 1, . . . , n and that may vary from line to line. Suppose we have shown that

(i) |E [Hn(Θ, γ, κ)] | ≤ C
√
h,

(ii) Var {Hn(Θ, γ, κ)} ≤ Ch,

(iii) |Hn,i(Θ, γ, κ)| ≤ C/
√
nh,

(iv) |Hn(Θ, γ, κ) −Hn(Θ, γ′, κ′)| ≤ C × (
√
n/h)×

(
‖γ − γ′‖+ |κ− κ′|

)
.

Then, assertion (iv) will allow to transfer the supremum sup(γ,κ)∈UM×[−M,M ] |Hn(Θ, γ, κ)| into
a maximum over a finite subset U ′ ⊂ UM × [−M,M ], whereas (i)-(iii) will allow to treat that
finite maximum.

For transferring the supremum into a maximum, let U ′ be an n−5/6-cover of UM × [−M,M ],
that is, a finite collection of points in UM × [−M,M ] such that, for each (γ, κ) ∈ UM × [−M,M ],
one can find a (γ′, κ′) ∈ U ′ with {‖γ − γ′‖+ |κ − κ′|} ≤ n−5/6. Note that U ′ can be chosen in
such a way that its cardinality is less than C×nr, where r > 0 depends only on the dimension d.
Then, connecting each (γ, κ) ∈ UM × [−M,M ] with some (γ′, κ′) ∈ U ′ and using (iv), we get
that

sup
(γ,κ)∈UM×[−M,M ]

|Hn(Θ, γ, κ)| ≤ C × (
√
n/h) × n−5/6 + max

(γ,κ)∈U ′
|Hn(Θ, γ, κ)|.

Since (
√
n/h) × n−5/6 = (nh3)−1/3 = o(1), it suffices to show that the maximum on the right-

hand side of the last display is oP (1).
To treat the finite maximum on the right-hand side of the last displayed formula, let p ≥ 3.

By Rosenthal’s inequality and (ii) and (iii) above we obtain

E

[
(Hn − EHn)

2p
]
≤ Cp

[
{Var(Hn)}p +

n∑

i=1

E
[
(Hn,i − EHn,i)

2p
]
]

≤ Cp {hp + n/(nh)p} ≤ Cp × hp,

where the constant Cp depends on p and where we suppressed the arguments Θ, γ and κ.
Since also {E(Hn)}2p ≤ Cp × hp by (i), we can use convexity of x 7→ |x|2p to obtain that

E[H2p
n ] ≤ Cp × hp. With U ′ ⊂ UM × [−M,M ] as chosen above such that #(U ′) ≤ Cnr, we

obtain

Pr( max
(γ,κ)∈U ′

|Hn(Θ, γ, κ)| > ε) ≤ C × nr max
(γ,κ)∈U ′

Pr(|Hn(Θ, γ, κ)| > ε)

≤ C × nr
E[H2p

n ]/ε2p ≤ Cp × nrhp = Cp × (nh5)r × hp−5r.

Choosing p = p(r) sufficiently large, the latter expression converges to 0 for n → ∞.
To finalize the proof, we have to prove (i)-(iv) above. Regarding (i) and (ii), we write

Hn(Θ, γ, κ) = ΘT {Wn(β
γ
n, v

κ
n)−Wn(β0, v)}

+ E[Ln(Θ, βγ
n, v

κ
n)−ΘTWn(β

γ
n, v

κ
n) | An(β

γ
n)] +Rn(Θ, βγ

n, v
κ
n)

− E[Ln(Θ, β0, v)−ΘTWn(β0, v) | An(β0)]−Rn(Θ, β0, v),
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where Wn and Rn are defined in (A.8) and (A.9), respectively. Then, (i) and (ii) are mere
consequences of Lemma B.3, B.4 and B.5.

For the proof of (iii), we can make use of the fact that, for any a, b ∈ R,

|ζi(a)− ζi(b)| ≤ τ × |a− b|+Qi × |a− b| × 1(a < 0 or b < 0),

which easily follows from the definition of ζi. Then,

∣∣∣∣ζi
{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}
− ζi{Zi(β

γ
n, v

κ
n)}
∣∣∣∣Ki(β

γ
n, v

κ
n)

≤ Qi

∣∣∣∣
ΘTXi(β

γ
n, vκn)√

nh

∣∣∣∣1
{
Zi(β

γ
n, v

κ
n) < 0 or Zi(β

γ
n, v

κ
n) <

ΘTXi(β
γ
n, vκn)√

nh

}
Ki(β

γ
n, v

κ
n)

+ τ

∣∣∣∣
ΘTXi(β

γ
n, vκn)√

nh

∣∣∣∣Ki(β
γ
n, v

κ
n).

Note that the same bound holds with (βγ
n, vκn) replaced by (β0, v). Now, the second summand

on the right of the previous display is obviously bounded by C/
√
nh. Regarding the first

summand, use condition (A5) to choose T such that m(v) < T < inf{x ∈ R : FZ(x) = 1}. For
(XT

i β
γ
n− vκn)/h ∈ supp(K), we have |m′(vκn)(X

T
i β

γ
n− vκn)| ≤ C×h. Therefore, we can choose n0

sufficiently large and independent of i and γ ∈ UM such that m(vκn) +m′(vκn)(X
T
i β

γ
n − vκn) ≤ T

for all n ≥ n0. This implies

Qi × 1{Zi(β
γ
n, v

κ
n) < 0} × 1{(XT

i β
γ
n − vκn)/h ∈ supp(K)} ≤ 1{Zi < T }

1− FC(Zi−)
≤ {1− FZ(T )}−1 < ∞.

For later reference, by a simple adaptation of the preceding argument, we even have

Qi × 1{Zi(β
γ
n, v

κ
n) < 0} × 1{(XT

i β
γ′

n − vκ
′

n )/h ∈ supp(K)} ≤ C, (B.2)

Qi × 1

{
Zi(β

γ
n, v

κ
n) <

ΘTXi(β
γ
n, vκn)√

nh

}
× 1{(XT

i β
γ′

n − vκ
′

n )/h ∈ supp(K)} ≤ C (B.3)

for any (βγ
n, vκn) = (β0+γ/

√
n, v+κ/

√
n) and (βγ′

n , vκ
′

n ) = (β0+γ′/
√
n, v+κ′/

√
n) with arbitrary

(γ, κ), (γ′, κ′) ∈ UM × [−M,M ] and for sufficiently large n. Apply these bounds to prove (iii).
The proof of (iv) follows after some tedious but straightforward calculations for each sum-

mand of the decomposition

Hn(Θ, γ, κ) −Hn(Θ, γ′, κ′) = Ln(Θ, βγ
n, v

κ
n)− Ln(Θ, βγ′

n , vκ
′

n ) =

n∑

i=1

(An,i +Bn,i + Cn,i),

where

An,i = τ
ΘTXi(β

γ′

n , vκ
′

n )√
nh

Ki(β
γ′

n , vκ
′

n )− τ
ΘTXi(β

γ
n, vκn)√

nh
Ki(β

γ
n, v

κ
n)

Bn,i = λi

{
Zi(β

γ′

n , vκ
′

n )− ΘTXi(β
γ′

n , vκ
′

n )√
nh

}
Ki(β

γ′

n , vκ
′

n )

− λi

{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}
Ki(β

γ
n, v

κ
n)

Cn,i = λi {Zi(β
γ
n, v

κ
n)}Ki(β

γ
n, v

κ
n)− λi

{
Zi(β

γ′

n , vκ
′

n )
}
Ki(β

γ′

n , vκ
′

n ),

17



and where, for a ∈ R, λi(a) = aQi1(a < 0). Note that this function satisfies |λi(a) − λi(b)| ≤
Qi|a− b|1(a < 0 or b < 0). For the sake of brevity, we only discuss how to bound the summand
Cn,i. We have

|Cn,i| ≤
∣∣∣λi {Zi(β

γ
n, v

κ
n)} − λi

{
Zi(β

γ′

n , vκ
′

n )
}∣∣∣Ki(β

γ
n, v

κ
n)

+
∣∣∣Ki(β

γ
n, v

κ
n)−Ki(β

γ′

n , vκ
′

n )
∣∣∣×
∣∣∣λi

{
Zi(β

γ′

n , vκ
′

n )
}∣∣∣ . (B.4)

The first summand on the right can be bounded by

Qi

∣∣∣Zi(β
γ
n, v

κ
n)−Zi(β

γ′

n , vκ
′

n )
∣∣∣× 1{Zi(β

γ′

n , vκ
′

n ) < 0 or Zi(β
γ
n, v

κ
n) < 0} × Ki(β

γ
n, v

κ
n),

which in turn is bounded by (C/
√
n)× {‖γ − γ′‖+ |κ− κ′|} thanks to (B.2) and the fact that

∣∣∣Zi(β
γ
n, v

κ
n)−Zi(β

γ′

n , vκ
′

n )
∣∣∣ ≤ |m(vκn)−m(vκ

′

n )|+ |m′(vκn)(X
T
i β

γ
n − vκn)−m′(vκ

′

n )(XT
i β

γ′

n − vκ
′

n )|

≤ C{‖βγ
n − βγ′

n ‖+ |vκn − vκ
′

n |} = (C/
√
n)× {‖γ − γ′‖+ |κ− κ′|},

by boundedness of suppX and by condition (A2). Regarding the second summand on the right

of (B.4) recall that |λi{Zi(β
γ′

n , vκ
′

n )}| = Qi|Zi(β
γ′

n , vκ
′

n )|1{Zi(β
γ′

n , vκ
′

n ) < 0}. Since Zi ≥ 0, the

condition Zi(β
γ′

n , vκ
′

n ) < 0 implies that

|Zi(β
γ′

n , vκ
′

n )| ≤ |Zi|+ |m(vκ
′

n ) +m′(vκ
′

n )(XT
i β

γ′

n − vκ
′

n )| ≤ 2|m(vκ
′

n ) +m′(vκ
′

n )(XT
i β

γ′

n − vκ
′

n )| ≤ C.

Finally,

∣∣∣Ki(β
γ
n, v

κ
n)−Ki(β

γ′

n , vκ
′

n )
∣∣∣

=
∣∣∣Ki(β

γ
n, v

κ
n)−Ki(β

γ′

n , vκ
′

n )
∣∣∣1{(XT

i β
γ
n − vκn)/h ∈ suppK or (XT

i β
γ′

n − vκ
′

n )/h ∈ suppK}

≤ C{‖βγ
n − βγ′

n ‖+ |vκn − vκ
′

n |}/h × 1{(XT
i β

γ
n − vκn)/h ∈ suppK or (XT

i β
γ′

n − vκ
′

n )/h ∈ suppK},

which implies that the second summand in (B.4) is bounded by C{‖βγ
n −βγ′

n ‖+ |vκn − vκ
′

n |}/h =
(C/

√
nh2) × {‖γ − γ′‖ + |κ − κ′|} as a consequence of (B.2). This proves that

∑n
i=1 |Cn,i| ≤

C × (
√
n/h)×{‖γ − γ′‖+ |κ− κ′|}, and the sums over An,i and Bn,i are treated similarly. The

details are omitted for the sake of brevity.

Lemma B.3. Under the conditions of Theorem 3.1,

E[Wn(β
γ
n, v

κ
n)−Wn(β0, v)] = O(

√
h), Var[Wn(β

γ
n, v

κ
n)−Wn(β0, v)] = O(h),

where the O-terms are uniform in γ ∈ UM and κ ∈ [−M,M ].

Proof. We can decompose Wn(β0, v)−Wn(β
γ
n, vκn) = Bn1 +Bn2, where

Bn1 =
1√
nh

n∑

i=1

[
τ −Qi1{Zi(β0, v) < 0}

]
× {Xi(β

γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)− Xi(β0, v)Ki(β0, v)}

Bn2 =
1√
nh

n∑

i=1

QiXi(β
γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)×

[
1{Zi(β0, v) < 0} − 1{Zi(β

γ
n, v

κ
n) < 0}

]
.
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We can treat both terms separately and begin with the treatment of Bn2. Regarding its expected
value, iterated expectation allows to write

E[Bn2] =

√
n

h
× E

[
E
[
Qi

(
1{Zi(β0, v) < 0} − 1{Zi(β

γ
n, v

κ
n) < 0}

) ∣∣Xi

]
Xi(β

γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)
]

=

√
n

h
× E

[(
FY |X{m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn) |Xi}

− FY |X{m(v) +m′(v)(XT
i β0 − v) |Xi}

)
Xi(β

γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)
]
.

An application of the mean value theorem shows that the difference between the conditional
c.d.f.s in the preceding display can be written as

fY |X(ε∗i |Xi)
{
m(vκn)−m(v) +m′(vκn)(X

T
i β

γ
n − vκn)−m′(v)(XT

i β0 − v)
}
,

where ε∗i denotes some intermediate point lying between m(vκn)+m′(vκn)(X
T
i β

γ
n−vκn) and m(v)+

m′(v)(XT
i β0−v). Since ‖βγ

n−β0‖ ≤ Mn−1/2 and |vκn−v| ≤ Mn−1/2, we can use conditions (A2)
and (A4) to bound ‖E[Bn2]‖ by a constant multiple of

h−1/2
E [‖Xi(β

γ
n, v

κ
n)‖Ki(β

γ
n, v

κ
n)] = O(h1/2),

uniformly in γ ∈ UM and κ ∈ [−M,M ].
Now, let us consider the covariance matrix of Bn2, for which we have

Var(Bn2) =
1

h
Var

[
Qi ×

[
1{Zi(β0, v) < 0} − 1{Zi(β

γ
n, v

κ
n) < 0}

]
× Xi(β

γ
n, v

κ
n) Ki(β

γ
n, v

κ
n)
]
.

Each entry of the matrix on the right can be bounded by

1

h
E

[
E
[
Q2

i ×
∣∣1{Zi(β0, v

κ
n) < 0} − 1{Zi(β

γ
n, v

κ
n) < 0}

∣∣ ∣∣Xi

] (XT
i βγ

n−vκn
h

)j
K2
(
XT

i βγ
n−vκn
h

) ]

(B.5)

for some j ∈ {0, 1, 2}. Exploiting that |1(A)−1(B)| = 1(A∪B)−1(A∩B) for any two events
A, B, we can write the conditional expectation in the previous display as

J
[
max

{
m(v) +m′(v)(XT

i β0 − v),m(vκn) +m′(vκn)(X
T
i β

γ
n − vκn)

}
|Xi

]

− J
[
min

{
m(v) +m′(v)(XT

i β0 − v),m(vκn) +m′(vκn)(X
T
i β

γ
n − vκn)

}
|Xi

]

=
∣∣J{m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn) |Xi} − J{m(v) +m′(v)(XT

i β0 − v) |Xi}
∣∣ , (B.6)

where J( · | · ) is defined for t ∈ R, x ∈ R
d as

J(t |x) = E
[
Q2

i1(Zi − t < 0) |Xi = x
]
= E

[
{1− FC(Yi−)}−1

1(Yi − t < 0) |Xi = x
]
. (B.7)

Note that the partial derivative J ′(t |x) = ∂
∂tJ(t |x) = {1 − FC(t−)}−1fY |X(t |x) is bounded

over a neighborhood of m(v) and the support of X, by condition (A4) and (A5). The mean
value theorem implies that the right-hand side of (B.6) can be bounded by a constant multiple
of ‖βγ

n − β0‖ + |vκn − v|, where the constant only depends on the bound on J ′ and on m′ and
and on the support of X. Since ‖βγ

n − β0‖+ |vκn − v| ≤ 2Mn−1/2 we obtain that the expression
in (B.5) can be bounded by

const
1√
nh2

× E

[ (
XT

i βγ
n−vκn
h

)j
K2
(
XT

i βγ
n−vκn
h

) ]
= O(n−1/2) = o(h).
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Now, let us consider Bn1 and let us begin by considering its expected value. We exemplarily
only deal with its first coordinate which can be written as

√
n

h
E

[
E
[
τ −Qi1{Zi(β0, v) < 0} |Xi

]
× {Ki(β

γ
n, v

κ
n)−Ki(β0, v)}

]

=

√
n

h
E

[[
τ − FY |X(m(v) +m′(v)(XT

i β0 − v) |Xi)
]
× {Ki(β

γ
n, v

κ
n)−Ki(β0, v)}

]
. (B.8)

Since τ = FY |X{m(XT
i β0) |Xi}, two Taylor expansions show that the term in square brackets

on the right can be written as

fY |X(ε∗i |Xi){m(XT
i β0)−m(v) −m′(v)(XT

i β0 − v)} = fY |X(ε∗i |Xi)m
′′(v∗i )(X

T
i β0 − v)2/2,

where ε∗i and v∗i denote two intermediate points. Now, if either (XT
i β

γ
n−vκn)/h or (XT

i β0−v)/h
lies in supp(K), we can use conditions (A1), (A2) and (A4) to see that the last display is of
order O{(h + n−1/2)2} = O(h2). Thus, the absolute value of the right-hand side of (B.8) can
be bounded by a constant multiple of

√
nh3 E|Ki(β

γ
n, v

κ
n)−Ki(β0, v)| =

√
nh3 E

∣∣∣K ′(ξi)
(
XT

i (βγ
n−β0)−(vκn−v)

h

)∣∣∣ = O(
√
h),

where ξi denotes some intermediate value between (XT
i β

γ
n − vκn)/h and (XT

i β0 − v)/h.
It remains to consider the covariance matrix of Bn1, which is given by

Var(Bn1) =
1

h
Var

[[
τ −Qi1{Zi(β0, v) < 0}

]
× {Xi(β

γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)− Xi(β0, v)Ki(β0, v)}

]

≤L
1

h
E

[[
τ −Qi1{Zi(β0, v) < 0}

]2 × {Xi(β
γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)−Xi(β0, v)Ki(β0, v)}

× {Xi(β
γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)− Xi(β0, v)Ki(β0, v)}T

]
,

where the inequality sign denotes the ordering in the Loewner order. As a consequence of (B.2),
for sufficiently large n, we can find a uniform bound on [τ − Qi1{Zi(β0, v) < 0}]2 both for
(XT

i β
γ
n − vκn)/h ∈ supp(K) or for (XT

i β0 − v)/h ∈ supp(K). Therefore, it is sufficient to show
that

E

[
{Xi(β

γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)− Xi(β0, v)Ki(β0, v)}

× {Xi(β
γ
n, v

κ
n)Ki(β

γ
n, v

κ
n)− Xi(β0, v)Ki(β0, v)}T

]
= O(h2).

Let us exemplarily indicate how to deal with the hardest entry, given by

E

[{(
XT

i βγ
n−vκn
h

)
Ki(β

γ
n, v

κ
n)−

(
XT

i β0−v
h

)
Ki(β0, v)

}2 ]
.

By adding and subtracting (XT
i β

γ
n − vκn)/h×Ki(β0, v) inside the curly brackets, we can bound

the last display by

2E
[ (

XT
i βγ

n−vκn
h

)2
{Ki(β

γ
n, v

κ
n)−Ki(β0, v)}2

]
+ 2E

[ {(
XT

i βγ
n−vκn
h

)
−
(
XT

i β0−v
h

)}2
Ki(β0, v)

2
]
.

Exploiting that ‖βγ
n − β0‖ + |vκn − v| ≤ 2Mn−1/2 and that nh3 → ∞, both summands can be

seen to be of order o(h2), uniformly in γ ∈ UM and κ ∈ [−M,M ].
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Lemma B.4. Under the conditions of Theorem 3.1,

sup
(γ,κ)∈UM×[−M,M ]

E |Sn(Θ, βγ
n, v

κ
n)| = O(h), (B.9)

sup
(γ,κ)∈UM×[−M,M ]

Var {Sn(Θ, βγ
n, v

κ
n)} = O{(nh)−1}, (B.10)

where

Sn(Θ, βγ
n, v

κ
n) = E[Ln(Θ, βγ

n, v
κ
n)−ΘTWn(β

γ
n, v

κ
n) | An(β

γ
n)]−

1

2
ΘTVΘ.

Proof. Set

Vn(β
γ
n, v

κ
n) =

1

nh

n∑

i=1

fY |XTβ0
{m(v) | v} Xi(β

γ
n, v

κ
n){Xi(β

γ
n, v

κ
n)}TKi(β

γ
n, v

κ
n).

We begin the proof by showing that (B.9) and (B.10) hold with V replaced by Vn(β
γ
n, vκn). We

can write E[Ln(Θ, βγ
n, vκn) | An(β

γ
n)] = An1 +An2, where

An1 =

n∑

i=1

{
E

[
QiZi(β

γ
n, v

κ
n)1 {Zi(β

γ
n, v

κ
n) < 0}

∣∣∣∣X
T
i β

γ
n

]

−E

[
Qi

{
Zi(β

γ
n, v

κ
n)−

ΘTXi(β
γ
n, vκn)√

nh

}

1

{
Zi(β

γ
n, v

κ
n) <

ΘTXi(β
γ
n, vκn)√

nh

} ∣∣∣∣X
T
i β

γ
n

]}
Ki(β

γ
n, v

κ
n),

An2 = − τ√
nh

n∑

i=1

ΘTXi(β
γ
n, v

κ
n)Ki(β

γ
n, v

κ
n).

For β ∈ R
d, let ϕβ( · | · ) : R2 → R be defined as

ϕβ(t |u) = E
[
Qi(Zi − t)1(Zi − t < 0) | XT

i β = u
]
= E

[
(Yi − t)1(Yi − t < 0) | XT

i β = u
]
.

One can easily see that, in a neighborhood of (β0,m(v), v), ϕβ is three times differentiable
with respect to t, where the first derivative is given by ϕ′

β(t |u) = ∂
∂tϕβ(t |u) = −FY |XTβ(t |u).

Moreover, the three derivatives are bounded in that neighborhood by condition (A4). Using
the definition of Zi(β, u) and of ϕβ , we can write An1 as

n∑

i=1

[
ϕβγ

n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)

∣∣∣∣X
T
i β

γ
n

}

−ϕβγ
n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn) +

ΘTXi(β
γ
n, vκn)√

nh

∣∣∣∣X
T
i β

γ
n

}]
Ki(β

γ
n, v

κ
n).

A Taylor expansion of t 7→ ϕβγ
n
(t |XT

i β
γ
n) shows that each summand can be written as

FY |XT βγ
n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)

∣∣XT
i β

γ
n

} ΘTXi(β
γ
n, vκn)√

nh
Ki(β

γ
n, v

κ
n)

+ fY |XTβγ
n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)

∣∣XT
i β

γ
n

} {ΘTXi(β
γ
n, vκn)}2

2nh
Ki(β

γ
n, v

κ
n)

+ f ′
Y |XTβγ

n

{
m∗

i

∣∣XT
i β

γ
n

} {ΘTXi(β
γ
n, vκn)}3

6(nh)3/2
Ki(β

γ
n, v

κ
n),
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wherem∗
i denotes some intermediate point at distance of at most |ΘTXi(β

γ
n, vκn)|/

√
nh ofm(vκn)+

m′(vκn)(X
T
i β

γ
n − vκn). Also note that (2.5) implies that

E
[
Qi1{Zi(β

γ
n, v

κ
n) < 0}

∣∣XT
i β

γ
n

]
= E

[
1{Yi < m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)}

∣∣XT
i β

γ
n

]

= FY |XT βγ
n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn) |XT

i β
γ
n

}
, (B.11)

for any γ ∈ UM , where the last equality exploits continuity of the conditional distribution of Y
given XT

i β
γ
n. Then, recalling the definition of Wn in (A.8) and exploiting (B.11), we obtain

E[Ln(Θ, βγ
n, v

κ
n)−ΘTWn(β

γ
n, v

κ
n) | An(β

γ
n)]

= An1 +An2 − E
[
ΘTWn(β

γ
n, v

κ
n) | An(β

γ
n)
]

=
1

2nh

n∑

i=1

fY |XT βγ
n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)

∣∣XT
i β

γ
n

}
{ΘTXi(β

γ
n, v

κ
n)}2Ki(β

γ
n, v

κ
n)

+
1

6(nh)3/2

n∑

i=1

f ′
Y |XT βγ

n

{
m∗

i

∣∣XT
i β

γ
n

}
{ΘTXi(β

γ
n, v

κ
n)}3Ki(β

γ
n, v

κ
n) =: Bn1 +Bn2.

Clearly, E|Bn2| ≤ C × E[Ki(β
γ
n, vκn)]/

√
nh3 = o(h) and Var(Bn2) ≤ C × E[Ki(β

γ
n, vκn)

2]/(n2h3),
which is of order O{(nh)−2}. Hence, it remains to consider the expected value and variance of

Bn1 −
1

2
ΘTVn(β

γ
n, v

κ
n)Θ =

1

2nh

n∑

i=1

{
fY |XTβγ

n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)

∣∣XT
i β

γ
n

}

−fY |XTβ0
{m(v) | v}

}
{ΘTXi(β

γ
n, v

κ
n)}2Ki(β

γ
n, v

κ
n).

A Taylor expansion of t 7→ fY |XTβγ
n
(t |XT

i β
γ
n) yields the existence of some intermediate point

m̄i between m(vκn) and m(vκn) +m′(vκn)(X
T
i β

γ
n − vκn) such that

fY |XTβγ
n

{
m(vκn) +m′(vκn)(X

T
i β

γ
n − vκn)
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}
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κ
n)

= fY |XTβγ
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{
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γ
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n) + f ′

Y |XTβγ
n

(
m̄i |XT

i β
γ
n

)
m′(vκn)(X

T
i β

γ
n − vκn)Ki(β

γ
n, v

κ
n).

By boundedness of f ′
Y |XT βγ

n
from condition (A4) and by the fact that (XT

i β
γ
n − vκn)Ki(β

γ
n, vκn) =

O(h)Ki(β
γ
n, vκn), uniformly in i, the right-hand side of the last displayed formula can be written

as [
fY |XTβγ

n

{
m(vκn) |XT

i β
γ
n

}
+O(h)

]
Ki(β

γ
n, v

κ
n),

where the O(h)-term is uniformly in i = 1, . . . , n, γ ∈ UM and κ ∈ [−M,M ]. Moreover, by
Lipschitz-continuity of (β, y, u) 7→ fY |XTβ {y | u} at (β0,m(v), v) from condition (A4), we get
that the last displayed formula can be written as

[
fY |XTβ0

{m(v) | v} +O(h)
]
Ki(β

γ
n, v

κ
n),

uniformly in i = 1, . . . , n, γ ∈ UM and κ ∈ [−M,M ]. Hence,

E|Bn1 −ΘTVn(β
γ
n, v

κ
n)Θ/2| ≤ C × E[Ki(β

γ
n, v

κ
n)] = O(h)

and similarly,

Var{Bn1 −ΘTVn(β
γ
n, v

κ
n)Θ/2} ≤ C × E[Ki(β

γ
n, v

κ
n)

2]/n = O(h/n).
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This completes the proof of (B.9) and (B.10) with V replaced by Vn(β
γ
n, vκn).

To finish the proof of the Lemma, denote the coordinates of Vn(β
γ
n, vκn) and V by

Vn(β
γ
n, v

κ
n) =

(
Vn0 Vn1

Vn1 Vn2

)
, V =

(
V0 V1

V1 V2

)

and note that, since

E|Vnj − Vj | ≤ E|Vnj − E(Vnj)|+ |EVnj − Vj| ≤
√

Var(Vnj) + |EVnj − Vj |

for any j ∈ {0, 1, 2}, it suffices to show that EVnj = Vj +O(h) and VarVnj = O{(nh)−1}. Now,

EVnj =
fY |XTβ0

{m(v) | v}
h

E

[(
XT

i β
γ
n − vκn
h

)j

K

(
XT

i β
γ
n − vκn
h

)]

=
fY |XTβ0

{m(v) | v}
h

∫

R

(
u− vκn

h

)j

K

(
u− vκn

h

)
fXT βγ

n
(u) du

= fY |XTβ0
{m(v) | v}

∫

R

xjK (x) fXTβγ
n
(vκn + xh) dx.

By Lipschitz-continuity of (β, u) 7→ fXTβ(u) in (β0, v) as assumed in condition (A3), we can

write the right-hand side of the last displayed formula as Vj +O(h) +O(n−1/2) = Vj +O(h).
Regarding the variance, split the variance into a sum of variances and bound each summand

by its second moment to obtain

Var(Vnj) ≤
fY |XTβ0

{m(v) | v}2

nh2
E

[(
XT

i β
γ
n − vκn
h

)2j
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(
XT
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]

=
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{m(v) | v}2

nh

∫

R

x2jK (x)2 fXTβγ
n
(vκn + xh) dx = O{(nh)−1},

uniformly in γ ∈ UM and κ ∈ [−M,M ]. This proves the lemma.

Lemma B.5. Under the conditions of Theorem 3.1, we have

sup
(γ,κ)∈UM×[−M,M ]

E[Rn(Θ, βγ
n, v

κ
n)

2] = O{(nh)−1/2} = o(h).

Proof. Obviously, Rn(Θ, βγ
n, vκn) is centered, whence E[Rn(Θ, βγ
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Then, by iterated expectation,
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2
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Using (B.1), we can bound nER2
i from above by
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,

(B.12)

where J( · | · ) is defined in (B.7). By the mean value theorem, there exists some ε∗i between the
arguments of J(· |Xi) in (B.12) such that its right-hand side equals

‖Θ‖2 8√
nh3

E
[
J ′(ε∗i |Xi)‖Xi(β

γ
n, v

κ
n)‖3Ki(β

γ
n, v

κ
n)

2
]
.

As J ′(· | ·) is bounded as explained after its definition in (B.7) and as E[‖Xi(β
γ
n, vκn)‖3Ki(β

γ
n, vκn)

2] =
O(h), we can finally conclude that Var{Rn(Θ, βγ

n, vκn)} is of order O{(nh)−1/2} = o(h), uniformly
in γ ∈ UM and κ ∈ [−M,M ].

Lemma B.6. Under the conditions of Theorem 3.1, we have

Wn(β0, v) = −Un + oP (
√
nh5),

where Un is defined in (A.5).

Proof. It suffices to consider the expected value and the variance of Wn(β0, v) +Un. Regarding
the expected value, note that the sum in the definition of Un has mean zero. Write Wn(β0, v) =
(Wn1,Wn2)

T and let us first consider its first coordinate. By iterated expectation and (B.11),
we get that E[Wn1] is equal to
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]
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}
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]
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(
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where ṽ ∈ R denotes some intermediate point lying strictly between v and v + hw. Now, note
that, for any x ∈ R,

τ = FY |XTβ0
{Qτ (x) |xT β0} = FY |XT β0

{
m(xTβ0) |xTβ0

}
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as a consequence of continuity of the mapping y 7→ FY |XTβ0
(y |xTβ0). In particular, we have

τ = FY |XTβ0
{m(v + hw) | v + hw}, whence the mean value theorem applied to the function

y 7→ FY |XT β0
{y | v + hw} implies that E[Wn1] is equal to

−
√
nh5

2

∫

R

fY |XT β0
(m̃ | v + hw)m′′(ṽ)w2K (w) fXTβ0

(v + hw) dw,

where m̃ ∈ R denotes a second intermediate point lying between m(v + hw) and m(v + hw) −
m′′(ṽ)h2w2/2. Four further applications of the mean value theorem show that the last display
can be written as

−
√
nh5

2
fY |XTβ0

{m(v) | v}m′′(v)fXT β0
(v)K̄2 + o(

√
nh5).

Completely analogous calculations for the second coordinate show that

E[Wn2] = −
√
nh5

2
fY |XT β0

{m(v) | v}m′′(v)fXT β0
(v)K̄3 + o(

√
nh5),

which implies that E[Wn(β0, v) + Un] = o(
√
nh5).

Now, consider the variance. To prove the lemma, it is sufficient to show that

1

h
Var

(
Qi

[
1{Zi < m(v) +m′(v)(XT

i β0 − v)} − 1
{
Zi < m(XT

i β0)
} ]

Xi(β0, v)Ki(β0, v)
)

is of order O(h2) = o(nh5), as n → ∞. Each entry of this matrix can be bounded by

1

h
E

[
E
[
Q2

i

∣∣1{Zi < m(v) +m′(v)(XT
i β0 − v)} − 1

{
Zi < m(XT

i β0)
} ∣∣ ∣∣Xi

]

×
(
XT

i β0−v
h

)j
K2
(
XT

i β0−v
h

) ]

for some j ∈ {0, 1, 2}. Proceeding analogously as in the proof of Lemma B.3, it is sufficient to
show that the conditional expectation in the last display is of order O(h2), uniformly. Again
similarly as in the proof of Lemma B.3, it can be bounded by

∣∣J{m(v) +m′(v)(XT
i β0 − v) |Xi} − J{m(XT

i β0) |Xi}
∣∣

≤ const×|m(v) +m′(v)(XT
i β0 − v)−m(XT

i β0)| ≤ const×(XT
i β0 − v)2,

where the estimations are based on Taylor expansions of J(· |Xi) and m, respectively. The
assertion of the lemma follows upon noting that the support of X is bounded.
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