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Abstract

The question whether structural changes in time-resolved images are of statistical
significance, and therefore of scientific interest, or merely emerge from random noise is of
great relevance in many practical applications such as live cell fluorescence microscopy,
where intracellular diffusion processes are investigated.

In this paper the statistical recovery of such time-resolved images from fluorescence
microscopy of living cells is discussed, based on which a bootstrap method is introduced
that allows to both monitor and visualize statistically significant structural changes be-
tween individual frames over time. The method can be adopted for use in other imaging
systems. It yields a criterion to assess time-resolved small scale structural changes e. g.
in the nanometer range.

The proposed bootstrap method is based on data reconstruction with a regularization
technique as well as new theoretical results on uniform confidence bands for the function
of interest in a two-dimensional heteroscedastic nonparametric convolution-type inverse
regression model of Poisson-type.

Moreover, a data-driven selection method for the regularization parameter based on
statistical multiscale methods is discussed. The method can be used for an automatic,
data-driven data analysis.

The theoretical results are demonstrated in a simulation study and are used to analyze
data of fluorescently labeled intracellular transport compartments in living cells.

Key words: bootstrap, confidence bands, deconvolution, fluorescence microscopy, live cell mi-
croscopic imaging,

1 Introduction

In many applications, data show a dynamic behavior, that is, making observations of the
same objects at different times will give different data sets not only due to random noise but
also due to systematic changes. The question of interest then is which changes are significant
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and which ones are not. As a particular example we consider microscopic live cell imaging in
biology in which a sequence of images is taken over time. Figure 1 shows such a sequence of
images taken over a total period of 44.844 seconds with equidistant time steps.

Figure 1: Sequence of images of living HeLa cells in which membrane compartments inside
the cell are stained with a fluorescent dye, taken over a total period of 44.844 seconds with
equidistant time steps.

Figure 2: Exemplary demonstration of the determination of regions of significant difference
between the images at different time steps. Clockwise from upper left: Image at time steps
0 and 3, estimated PSF and reconstruction of a difference image. The picture shows living
HeLa cells in which membrane compartments inside the cell are stained with a fluorescent
dye.

A simple visual inspection of the sequence of images in Figure 1 does not reveal much of
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the evolution over time. By taking differences of images at different time steps, changes
can be emphasized (see for instance Figure 2 where the difference image of the first and the
fourth image of the above sequence is displayed). This hints at several differences which
are in the focus of our investigations. The example of microscopic imaging bears additional
complications, though, as it is intrinsically multivariate and it is actually an ill-posed inverse
problem. It is a well-known fact (see for example Adorf (1995), Wallace et al. (2001) or Bertero
et al. (2009)) that unprocessed images, taken with imaging devices such as optical microscopes
or telescopes, are blurry which is due to the physical characteristics of the propagation of light
at surfaces of mirrors and lenses. The process of optical distortion can mathematically be
modeled as convolution of the ”true image” with a so-called point-spread function ψ (PSF).
This means that in this case we only have empirical access to

Tψf = f ∗ ψ,

where f is the true image, which the object of interest, ψ denotes the point-spread function,
the operation ∗ denotes convolution and Tψ is the associated (linear) convolution operator. In
many other inverse problems the connection between the quantity of interest and the observed
one can be expressed in terms of a linear operator equation as well. Well-known examples are
Positron Emission Tomography, which involves the Radon transform, (Cavalier (2000)), the
heat equation (Mair and Ruymgaart (1996)) or the Laplace transform (Saitoh (1997)). In all
these examples the first step in data analysis is the recovery of the quantity of interest which
involves the approximate inversion of the operator considered.
In the context of imaging we often face a further characteristic property as it is composed
of two parts: The optical device (such as the microscope or the telescope) and a detector
(for example a CCD). While the inverse problem character is is due to the properties of the
optical components, the detectors usually entail peculiarities as well and provide count rates
rather than continuously distributed data, a fact that is often ignored. In this paper we take
all properties discussed above into account and consider a nonparametric inverse regression
model of Poisson-type:

Y ∼ Poisson((f ∗ ψ)(x1, x2)). (1)

In this application the variable x = (x1, x2) represents a pixel of a CCD and we can only
observe a blurred version of the true image modeled by the signal f with Poisson noise. In
contrast to other authors (see, e. g., Cavalier and Tsybakov (2002)) we do not assume that the
function ψ in model (1) is periodic, because in the reconstruction of astronomical or biological
images from telescopes or microscopic imaging devices this assumption is often unrealistic.
The purpose of the present paper is to suggest a procedure for the reconstruction of images
observed according to model (1) with a particular focus on determining regions of significant
change between images at subsequent time steps as, for instance, in live-cell imaging. To
this end we adapt a multiresolution method, presented in Bissantz et al. (2008) in a one-
dimensional framework, to the reconstruction of two-dimensional images from fluorescence
microscopy. Furthermore, cf. Hotz et al. (2012) for a related approach to image denoising.
Furthermore, we extend results from Proksch et al. (2014), who consider the construction
of uniform confidence surfaces in multivariate inverse regression models with convolution
operator with homoscedastic, additive errors, to the Poisson model (1). Based on these
asymptotic results, bootstrap confidence surfaces are derived, which provide both a graphical
tool but also a rigorous statistical testing procedure to a given significance level for our
problem of determining regions of significant change.
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We apply our method to data from live-cell imaging of cultured mammalian cells. The HeLa
cells were stained with the fluorescent dye DiI which labels lipid membranes inside the cell that
belong to intracellular transport compartments. It is therefore used to monitor intracellular
transport processes in living mammalian cells by fluorescence microscopy (see The Molecular
Probes Handbook).
The organization of this paper is as follows. In Section 2 we introduce the mathemati-
cal methods used for data analysis. This includes image reconstruction, asymptotic and
bootstrap-based confidence bands and a multiresolution based approach to the selection of
the smoothing parameter required for the image reconstruction. All technical details are given
in Section 6 and all proofs are deferred to an appendix. All other sections are devoted to
data analysis. First we summarize the data to which our methods are applied and give a
description of the pipeline for data reduction in Section 3. Finally, in Sections 4 and 5 we
discuss the results of our data analysis and its implications for live cell imaging.

2 Statistical modeling and mathematical preliminaries

Suppose that we have available a sequence of images of some object evolving over time, e. g.,
in live cell imaging as discussed in the introduction. Assume that for a fixed time we observe

Yi,j ∼ Poisson((f ∗ ψ)(xi, xj)) = Poisson(g(xi, xj)), (i, j) ∈ {−n, . . . , n}2, (2)

where the design points (xi, xj) = (i/nan, j/nan) correspond to a value of a CCD at pixel
(i, j) of the image and the numbering is such that the center of the image is at (0, 0). The
sequence (an)n∈N is a sequence of design parameters satisfying the condition an → 0 as well
as nan →∞ as n →∞. Recall that we are interested in the function f itself and not in the
convolution of f and ψ. Throughout this paper the point-spread function ψ(·, ·) is assumed
to be known. For a discussion of this assumption and the choice of the PSF in practical
applications we refer to Section 3.
In the following ααα ∈ N2 denotes a double-index, the bold type letters x,y, z and ξξξ denote
elements of R2 and xi,j = (xi, xj)

T . Further, with a slight abuse of notation we shall denote

the vector (y1−xih ,
y2−xj
h )T by

y−xi,j
h for a scalar h ∈ R\{0} for the sake of a clearer display of

the results and the proofs.
Throughout this paper, some conventional multi-index notation is used. For a double-index
ααα ∈ N2 we denote

xααα = xα1
1 · x

α2
2 , |ααα| = α1 + α2, ααα! = α1! · α2!

and

ααα ≤ (i, j) if α1 ≤ i and α2 ≤ j.

2.1 Estimation

Given Poisson model (2), the first goal is to define a suitable estimator for the signal (image)
f . To this end, let Ff define the Fourier transform of f . As a consequence of the convolution
theorem and the formula for Fourier inversion we obtain the representation

f(x) =
1

(2π)2

∫
R2

Fg(ξξξ)

Fψ(ξξξ)
exp(iξξξTx) dξξξ. (3)
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An estimator for the regression function f can now easily be obtained from the data by
replacing the unknown quantity Fg = F(f ∗ψ) by an estimator F̂g. The random fluctuations

in the estimator F̂g cause instability of the ratio F̂g(ξ
ξξ)

Fψ(ξξξ) if at least one of the components of ξξξ
is large. As a consequence, the problem at hand is ill-posed and requires regularization. We
address this issue by suppressing large values of ξj for j = 1, 2 from the domain of integration,
i.e. we multiply the integrand in (3) with a sequence of smooth Fourier transforms Fη(h·) with
compact support [−h−1, h−1]2. Here, h = hn is a regularization parameter which corresponds
to a bandwidth in non-parametric curve estimation and satisfies h → 0 if n → ∞. The
choice of the regularization h is discussed in Section 2.6 below. For the exact properties
and for possible choices of the function η we refer to Assumption 2 below and Section 3.2,
respectively.
An estimator f̂n for the signal f in model (2) is now easily obtained as

f̂n(x) =
1

(2π)2

∫
R2

F̂g(ξξξ)

Fψ(ξξξ)
exp(iξξξTx)Fη(hξξξ) dξξξ, (4)

where

F̂g(ξξξ) =
1

2πn2a2
n

∑
(i,j)∈{−n,...,n}2

Yi,j exp(−i(ξ1xi + ξ2xj))

is the empirical analogue of the Fourier transform of g. Note that with the definition of the
kernel

Kn(x) =
1

2π

∫
R2

Fη(ξξξ)

Fψ( ξξξh)
exp(iξξξTx) dξξξ, (5)

the estimator (4) can be written in the following form:

f̂n(y1, y2) =
1

(2π)2nda2
nh

2

∑
(i,j)∈{−n,...,n}2

Yi,jKn

(
y1 − xi
h

,
y2 − xj
h

)
. (6)

2.2 Assumptions

We now state the assumptions that are used for our theoretical considerations.

Assumption 1. Assume that there exist constants Sf > 0 and SFg > 0 such that

(i)

∫
R2

|ξξξααα| |Ff(ξξξ)| dξξξ <∞ for all |ααα| ≤ Sf .

(ii)

∫
R2

|zααα| |g(z)| dz <∞ for all |ααα| ≤ SFg, where g = f ∗ ψ.

(iii) The function g is bounded away from zero, and the functions ∂αααg, |ααα| ≤ 1 are bounded,
that is, there exist positive constants g∗ and G∗ such that 0 < g∗ ≤ g(z) ≤ G∗ and
|∂αααg(z)| ≤ G∗ for all |ααα| ≤ 1, z ∈ R2.
Furthermore, ∂αααg is Lipschitz-continuous for |ααα| = 1.
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Remark 1. The constants Sf and SFg in Assumption 1 quantify the degree of smoothness of
the functions f and Fg, respectively, by the connection between the decay of the respective
Fourier transforms and the derivatives of the transformed functions. If Assumption 1 holds,
this implies that the functions f and Fg are Sf -times, respectively SFg-times, continuously
differentiable.

Assumption 2. The Fourier transform Fη of η is symmetric, supported on [−1, 1]2, Fη(ξξξ) ≡
1 for all ξξξ ∈ D := [−δ, δ]2 for some δ > 0 and |Fη| ≤ 1. Further, there exists a constant
SFη ≥ 3 such that all partial derivatives of order up to SFη exist and are continuous.

Remark 2. A straightforward choice for a regularization function Fη is

Fη(ξ1, ξ2) =


exp
(
− 1

1−|ξξξ| + 1
)
|ξξξ| < 1

0 |ξξξ| ≥ 1

(7)

where | · | denotes the Euclidean distance. Other widely used choices for Fη include, for
instance, the family of functions Fηγ = (1− | · |2)γI[0,1](| · |) where the degree of smoothness
increases monotonically with the parameter γ. The choice of Fη = I[−1,1]2 corresponds to the
popular spectral cut-off spectral regularization method. Our approach is similar as we also
cut off high frequencies but the smoothness of the function (7) at the boundary of its support
results in theoretical properties of the Kernel Kn which are more suitable for our purposes.

Assumption 3. For a positive integer β′ and a constant γ ≥ 1 assume that

1

Fψ(ξξξ)
=
(
P (ξξξ)

)γ
, (8)

where p is a polynomial of degree β′, that is

P (ξξξ) =
∑

(i,j)∈{0,...,β′}2
i+j≤β′

ai,jξξξ
(i,j) =

∑
(i,j)∈{0,...,β′}2

i+j≤β′

ai,jξ
i
1 · ξ

j
2,

with possibly complex coefficients ai,j .

Remark 3.

(i) If γ ∈ N, there exists a representation of 1/Fψ(ξξξ) in which γ = 1. Thus, in this case
we choose the representation with γ = 1. If γ /∈ N, we choose the largest number γ for
which (8) holds, in case this representation is not unique.

(ii) Assumption 3 guarantees that Fψ decays polynomially which ensures that the convo-
lution function ψ is not too smooth. An example for such a function is the joint density
of two independent Laplace distributed random variables:

ψ(z) =
1

4
exp
(
−|z1| − |z2|

)
with

1

Fψ(ξξξ)
= 2π

(
1 + ξ2

1 + ξ2
2 + ξ2

1ξ
2
2

)
,

where β′ = 4 and γ = 1.

6



(iii) Prominent examples of rotationally invariant functions are also included in Assumption
3, such as

ψ(z) = 2−
3
2 exp

(
−
√
z2

1 + z2
2

)
with

1

Fψ(ξξξ)
= 2

3
2
(
1 + ξ2

1 + ξ2
2

) 3
2 .

In this example we have β′ = 2 and γ = 3/2.

(iv) Some implications of Assumption 3 that will be used throughout this paper are listed
in Lemma 3 in Section 6.

2.3 Theoretical results

In this paper we consider graphical analysis of the data. In particular, we discuss image
reconstruction, i.e. removal of the blur introduced by the PSF and the detection of regions of
statistically significant changes between images at different points in time. The first task is
complicated by the necessity of choosing a regularization parameter for image reconstruction
methods which controls the trade-off between fit to the (noisy) data and expected smoothness
of the true image. Subsequently, we solve the problem of deciding which changes between
image frames are statistically significant i.e. pointing towards a real change in the object’s
appearance and deciding which changes are just due to image noise. We adapt an approach
based on uniform confidence bands which have only recently been developed by Proksch et al.
(2014) to our model (2). The following sections will introduce some relevant theory and a
bootstrap approach for the determination of quantiles for the confidence bands.

2.4 Graphical model choice

Throughout this paper the image to be reconstructed is modeled as a bi-variate function
whose graph is a surface in R3. Asymptotic confidence surfaces are two random surfaces,
forming a corridor, which are constructed in such a way that the object of interest, that is,
the graph of the true function, is fully contained between the surfaces with high probability
converging to the nominal level 1 − α as the sample size increases. The basic part is a limit
theorem for the maximal deviation between the estimator and the function of interest which
can be derived by means of extreme value theory. This yields a result of the form

lim
n→∞

P
((

sup
x∈[0,1]2

v−1/2
n (x)|f̂n(x)− f(x)| − dn

)
dn < κ

)
= e−2e−κ , (9)

where vn(x) = (nanh
1+β(2π)2)−2‖K‖22g(x) is the asymptotic variance of the estimator f̂n(x)

(see Lemma 2 in Section 6). Note that (9) implies

lim
n→∞

P
(
f(x) ∈

[
f̂n(x)− Φn,α(x) , f̂n(x) + Φn,α(x)

]
∀ x ∈ [0, 1]2

)
= 1− α, (10)

where Φn,α(x) = (q1−α/dn +dn)v
1/2
n (x) with the 1−α-quantile q1−α = − log(−0.5 log(1−α))

of the Gumbel limit distribution (9). Eq. (10) implies that for all x ∈ [0, 1]2 at the same time,
with probability of approximately 1 − α, the true value f(x) lies between f̂n(x) − Φn,α(x)

and f̂n(x) + Φn,α(x). Thus, the set
{[
f̂n(x)−Φn,α(x) , f̂n(x) + Φn,α(x)

]
|x ∈ [0, 1]2

}
defines
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a lower and an upper surface between which the true surface
{
f(x) |x ∈ [0, 1]2

}
is contained

with high probability.
Confidence surfaces for the difference between two images at different time steps immediately
provide us with a mean for the determination of regions of statistically significant changes in
the image. An alternative approach, based on the confidence surfaces for single images, would
be to compare those surfaces for the two images which are to be compared. A region would be
classified as showing a significant change in the image, if the surfaces do not overlap. However,
this yields a procedure which will in general result in a more conservative test for significance
of the differences between the two images than the approach based on the confidence surface
for the difference of the two images. Hence, we will use the latter approach in the data
analysis discussed below.
Next, we state one of our main results which is a limit theorem for the maximal deviation of
the estimate f̂n and the function of interest f of the form (9) for the Poisson-model (2).

Theorem 1. If Assumptions 1, 2 and 3 are satisfied and that log(n)2

na2nh
2 = o(1), and

nanh
√

log(n)
( 1

nan
+ hβ+Sf + (a2

nh)SFηIN(γ) + (a2
nh)SFη∧bγc(1− IN(γ))

)
= o(1),

as n→∞, then, in the Poisson-model (2), limit theorem (9) holds with dn =
√

2 ln(Cn,1) +

ln
(

2 ln(Cn,1)
)

2
√

2 ln(Cn,1)
, where

Cn,1 =

√
C2

(2π)3

1

h2
, and C2 = det

((
(2π)4

‖K‖22

∫
R2

|Ψ(ξξξ)Fη(ξξξ)|2ξξξ(i,j) dξξξ

)2

i,j=1

)
.

Since for many regularization functions that are frequently used in practice, such as those
discussed in Remark 2, not all conditions of Assumption 2 are satisfied, we now give a version
of Theorem 1 where the condition Fη(ξξξ) ≡ 1 for all ξξξ ∈ [−δ, δ]2, δ > 0 is dropped.

Theorem 2. Let all assumptions of Theorem 1 hold. Assume that Fη satisfies the conditions
listed in Assumption 2 for δ = 0, that is Fη(ξξξ) = 1 is only required for ξξξ = 0. If the constant
Sf , defined in Assumption 1, satisfies Sf ≥ 2 and

nanh
3+β log(n)→ 0 for n→∞,

limit theorem (9) holds with the same constants as defined in Theorem 1.

Note that the limit theorems both contain the unknown parameter (function) g. The following
corollary assures that the result still holds if g = f ∗ ψ is estimated from the data. To this
end let g̃n be the following estimator for g = Tψf :

g̃n(y) =
1

(2π)2

∫
R2

F ĝ(ξξξ) exp(iξξξTy)Fη(hξξξ) dξξξ.

Define

ĝn(y) =


g∗ if g̃n(y) < g∗,

g̃n(y) if g̃n(y) ∈ [g∗, G∗],

G∗ if̃ gn(y) > G∗.

(11)

For the following corollary to hold we need to impose an additional assumption on the function
η.
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Assumption 4. Let the function η : R2 → R be such that its Fourier transform Fη satisfies
the condition of Assumption 2. Furthermore, let either

η(z) = η̃
(
‖Az + b‖l2

)
, A ∈ R2×2, b ∈ R2

or

η(z) = η̌
(
aT z + b

)
, a ∈ R2, b ∈ R,

where η̃ : R→ R and η̌ : R→ R are functions of bounded variation on R.

This assumption guarantees the strong uniform convergence of ĝn to g as is shown in Lemma
6 and Corollary 4 in Section 6 below.

Corollary 1. Assume that the conditions of Theorem 1 and Assumption 4 are satisfied. Then
we have for any κ ∈ R

lim
n→∞

P
(
f̂n(x)− Φn,κ ≤ f(x) ≤ f̂n(x) + Φn,κ(x) for all x ∈ [0, 1]2

)
= e−2e−κ ,

where the sequence Φn,κ(x) is defined by

Φn,κ(x) =

√
ĝn(x)( κ

dn
+ dn)‖K‖2

(2π)2nanhβ+1
.

2.5 Obtaining Quantiles

Since the speed of convergence in limit theorems of the form (9) is known to be only of
logarithmic order (cf. Hall (1991)), the error in coverage accuracy of the asymptotic bands
decays also only logarithmically. For this reason we propose two alternative ways to obtain
quantiles that can be used instead of q1−α for the construction of the confidence surfaces in
this section. The first one is based on a strong invariance principle (see Lemma 4) and is
referred to as Gaussian method in the following sections and the second way is based on a
bootstrap re-sampling method.

2.5.1 Gaussian method

For the Gaussian approach we simulate realizations of iid normally distributed random vari-
ables. In Section 6 we show that, even though the residuals

(
Yi,j − g(xi, xj)

)
/
√
g(xi, xj) are

not identically distributed and follow a discrete distribution,

Zn,0(y) = nh1+β(f̂n(y)− Ef̂n(y)) =
hβ

nanh

n∑
i,j=−n

(Yi,j − g(xi, xj))Kn

(y1 − xi
h

,
y2 − xj
h

)
can be approximated in sup-norm, with an error of sufficiently small order, by

Zn,1(y) =
hβ

nanh

n∑
i,j=−n

ηi,j

√
g(xi, xj)Kn

(y1 − xi
h

,
y2 − xj
h

)
, (12)

where the ηi,j are iid standard normally distributed random variables.
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An application of Lemma 9 backwards yields that Zn,1 in (12) can be replaced by

Zn,2(y) =
hβ
√
g(y1, y2)

nh

n∑
i,j=−n

ηi,jKn

(y1 − xi
h

,
y2 − xj
h

)
. (13)

For the Gaussian approach to simulating quantiles, generateM fields {ηli,j | (i, j) ∈ {−n, . . . , n}2},
l = 1, . . . ,M of realizations of iid standard normally distributed random variables. For each
l, calculate

Z ln,2(y1, y2) =
hβ
√
g(y1, y2)

nanh

n∑
i,j=−n

ηli,jKn

(y1 − xi
h

,
y2 − xj
h

)
on a grid of values (y1, y2) ∈ I2 and compute the suprema

Sln = sup
(y1,y2)∈I2

|Z ln,2(y)|, l = 1, . . . ,M.

Finally, estimate the (1− α)-quantile qη,1−α from the sample S1
n, . . . , S

M
n .

Corollary 2. Assume that the conditions of Corollary 1 are satisfied. Then we have for any
κ ∈ R, α ∈ (0, 1)

lim
n→∞

P
(
f̂n(x)− Φη

n,α ≤ f(x) ≤ f̂n(x) + Φη
n,α(x) for all x ∈ [0, 1]2

)
= 1− α,

where the sequence Φη
n,α(x) is defined by

Φη
n,α(x) =

√
ĝn(x)(

qη,1−α
dn

+ dn)‖K‖2
(2π)2nanhβ+1

,

where qη,1−α is the estimated (1− α)−quantile of supy∈[0,1]2 |Zn,2(y)|.

2.5.2 Poisson Bootstrap

For the bootstrap approach we suggest to generate data

Y ∗i,j ∼ Poisson
(
ĝn(xi, xj)

)
.

Conditionally on the observations, the field Y = {Y ∗i,j | (i, j) ∈ {−n, . . . , n}2} consists of
independent, Poisson distributed random variables with E∗(Y ∗i,j) = Var∗(Y ∗i,j) = ĝn(xi, xj).

Define f̂∗n(y) and ĝ∗(y) as the bootstrap versions of the estimators f̂n and ĝn, that is

f̂∗n(y1, y2) =
1

(2π)2nda2
nh

2

∑
(i,j)∈{−n,...,n}2

Y ∗i,jKn

(
y1 − xi
h

,
y2 − xj
h

)
.

and

ĝ∗n(y) =


g∗ if g̃∗n(y) < g∗,

g̃∗n(y) if g̃∗n(y) ∈ [g∗, G∗],

G∗ if̃ g∗n(y) > G∗,
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where g̃∗n(y) =
(
f̂∗n ∗ ψ

)
(y).

This way, generate M bootstrap fields {Y l∗
i,j | (i, j) ∈ {−n, . . . , n}2}, l = 1, . . . ,M and define

Z l∗n,1(y1, y2) =
hβ

nh

n∑
i,j=−n

(
Y l∗
i,j − ĝ(xi, xj)

)
Kn

(y1 − xi
h

,
y2 − xj
h

)
on a grid of values (y1, y2) ∈ I2 and calculate the suprema

Sl∗n = sup
(y1,y2)∈I2

|Z l∗i,j(y1, y2)|, l = 1, . . . ,M.

Finally, estimate the (1− α)-quantile q∗1−α from the bootstrap sample S1∗
n , . . . , S

M∗
n .

Lemma 1. Let the assumptions of Lemma 6 be satisfied. Then, as n→∞

sup
y∈[0,1]2

|ĝ∗n(y)− ĝn(y)| = o∗P
(
log(n)−

1
2
)

a.s..

The following corollary is a direct consequence of Theorems 1 and 3 and Lemma 1.
The next Theorem justifies the use of a bootstrap procedure in order to approximate the
quantiles.

Theorem 3. If the assumptions of Theorem 1 are satisfied, the following two limit theorems
hold:

lim
n→∞

P∗
(

sup
x∈[0,1]2

(
v∗n(x)−

1
2 |f̂∗n(x)− f̂n(x)| − dn

)
· dn < κ

)
= e−2e−κ a.s., (14)

and

lim
n→∞

P∗
(

sup
x∈[0,1]2

(
v̂∗n(x)−

1
2 |f̂∗n(x)− f̂n(x)| − dn

)
· dn < κ

)
= e−2e−κ a.s., (15)

where

v∗n(x) =
ĝ(x) ‖K‖2

(2π)4n2a2
nh

2+2β
and v̂∗n(x) =

ĝ∗(x) ‖K‖2
(2π)4n2a2

nh
2+2β

.

The sequence dn is the same as in Theorem 1.

Corollary 3. Assume that the conditions of Corollary 1 are satisfied. Then we have for any
κ ∈ R

lim
n→∞

P∗
(
f̂n(x)− Φ∗n,α ≤ f(x) ≤ f̂n(x) + Φ∗n,α(x) for all x ∈ [0, 1]2

)
= 1− α a.s.,

where the sequence Φ∗n,α(x) is defined by

Φ∗n,α(x) =

√
ĝn(x)(

q∗1−α
dn

+ dn)‖K‖2
(2π)2nanhβ+1

,

where q∗1−α is the (1− α)−quantile of either bootstrap procedure (14) or (15).
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2.6 Stochastic multiresolution analysis in nonparametric regression

In this Section we give a short summary of the basic ideas of stochastic multiresolution
analysis, which will be used below to select the regularization parameter for the estimator
(4) (see Bissantz et al. (2008)). The basic idea amounts to testing the distribution of the
residuals on all scales for being distinguishable from pure noise and is based on the following
theoretical result.
Assume that we have data at our disposal according to model (2) and let f̂n be some re-
construction of the (unknown) true image f . We aim to decide whether f̂n is a reasonable
reconstruction of the data, which, in turn, will indicate whether the regularization parameter
h involved in the computation of (4) is acceptable. If so, we expect g̃n = ψ ∗ f̂n to be a good
approximation to the true observable image g := ψ ∗ f and the residuals

Ri,j :=
Yi,j − g̃n(xi, xj)√

ĝn(xi, xj)
, (16)

should resemble standardized Poisson noise (model (2)). Large values of Ri,j indicate substan-
tial remaining signal in the residuals due to over-smoothing of the estimator (4) whereas too
small values of Ri,j indicate over-fitting. In both cases we would consider the corresponding
regularization parameter improperly chosen.
In stochastic multiresolution analysis we aim at testing the distribution of residuals simul-
taneously on all scales for significant deviation from randomness and for indications of over-
or under-fitting. The basic idea is to check the residual properties on all scales by means of
the increments of their partial sums which in the most simple (i.e. one-dimensional) setting
implies controlling the value of the statistic

D(n) = max
0≤i<j≤n

|Sj − Si|
kα(k/ log(n))

, where Sl :=
l∑

i=1

Ri,

where k = j − i and α is the inverse Chernoff function of the Ri, which depends on the
distribution of the residuals (16). Note that this test considers all scales for testing if the
residuals are consistent with pure Poisson noise, which is very different from a test based on
a global statistic such as the sum of squares of the residuals.
By a result from Steinebach (1998), D(n) → 1 almost surely as n → ∞, which suggests to
consider choices of the regularization parameter to be reasonable if D(n) ≈ 1. Note that for
fixed n, the difference Sj − Si is the increment of the (discrete) partial sum process S(·) over
the set [i, j] ∩ {1, . . . , n}.
In image analysis we have to consider two-dimensional signals f(x1, x2) and hence two-
dimensional arrays of residuals as well as two-dimensional partial sums and their increments.
To this end define the double-indexed partial sum Si1,i2 by

Si1,i2 =

i1∑
p=1

i2∑
q=1

Rp,q

and its increment I(i1,i2),(j1,j2),(n1,n2) over the discrete grid X(i1,i2),(j1,j2),(n1,n2) := [i1, j1] ×
[i2, j2] ∩ {1, . . . , n1} × {1, . . . , n2} by

I(i1,i2),(j1,j2),(n1,n2) := Sj1,j2 − Si1,j2 + Si1,i2 − Sj1,i2 =
∑

p,q∈X(i1,i2),(j1,j2),(n1,n2)

Rp,q. (17)
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This means that in the two-dimensional multiscale approach we need to control the normalized
increments I(i1,i2),(j1,j2),(n1,n2) for all rectangles X(i1,i2),(j1,j2),(n1,n2). Kabluchko and Munk
(2009) showed that

lim
n→∞

max
X(i1,i2),(j1,j2),(n1,n2)

1≤ik<jk≤nk, k=1,2

I(i1,i2),(j1,j2),(n1,n2)

(j1 − i1)(j2 − i2)α
(

(j1−i1)(j2−i2)
log(n)

) = 1 a.s.

if {Rp,q | (p, q) ∈ N2} is an array of independent and identically distributed random variables
with unit variances such that logE

(
exp(θRp,q)

)
<∞ for some θ > 0. Hence, the same ideas

as in the one-dimensional case apply in the two-dimensional setting as well.

3 Material and methods

3.1 Microscopic images

For live-cell imaging HeLa-Cells (ATCC) were cultured on cover-slips with Dulbecco’s Mod-
ified Eagle Medium (DMEM), 5% Fetal Calf Serum (FCS) at 37◦C. Prior to staining the
cells were washed three times with Phosphate Buffered Saline (PBS). Cells were then incu-
bated with the lipophilic carbocyan dye DiI (Molecular Probes) in DMEM for 5 min at 37◦C.
Cells were washed with DMEM to remove excess dye and were then subjected to fluorescence
microscopy using a confocal laser scanning microscope (Leica TCS) equipped with a HeNe-
Laser. The samples were excited at 543 nm and imaged for about 50 seconds. Finally, the
number of pixels per image is 512× 512 = 262144 and the number of time steps is 8+1.

3.2 Image reconstruction and parameter selection

For the image reconstruction we use the estimator (4) proposed in section 2.1. Such regu-
larization methods require to fix a regularization parameter for the method. In the case of
the damped spectral cut-off estimator (4) this amounts to the selection of the regularization
parameter h.
We suggest the following procedure based on the multiresolution introduced in Section 2.6
and which is based on the multiscale statistic

MR = maxL,k,l

∣∣∣∣ ∑
(i,j)∈AL,k,lij

Ri,j

∣∣∣∣
L2ρ−1

µ (L2 log(n2))
,

where AL,k,l is the partition with number (k, l) of a partitioning of the residuals

Ri,j =
r̂i,j

sd(r̂i,j)
with r̂i,j := Yi,j − f̂n(x

(i)
1 , x

(j)
2 ).

of the image after deconvolution. L is the number of pixels along each coordinate axis of the
partitions and ρ−1

µ the inverse Chernoff function of the Ri,j . Fig. 3 shows a map of the image
partitioning in two different scales.
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Figure 3: Partitioning of the residual image along two scales with L = 8 and L = 64,
respectively.

The multiresolution statistic ’measures’ the image quality on all scales considered. Whereas
it can be shown theoretically under suitable assumptions that the multiscale statistic MR
converges almost surely to 1 for n→∞, for finite size data the statistic MR shows a distri-
bution of finite, non-zero variance due to the randomness of the residuals. Hence, we suggest
the following approach. First, we simulate MR and determine the 5% and 95%-quantile of
the simulated distribution (see Section 3.3 below for more details). In other words, in 90%
of the cases the residuals, if due to random fluctuations for a Poisson data model, should be
within these two quantiles. Then, we consider all regularization parameters which result in
MR-values within this confidence interval to be acceptable and use the mean of these values
in our subsequent computations. It turns out that the results from such simulations are only
insignificantly dependent on the true test image used for the generation of the artificial data
in the simulations. Hence, it is sufficient to determine the distribution of MR only once as
long as the the main image characteristics (in particular the mean signal in the pixels) have
not changed severely. Most importantly, for our application in live cell imaging, the differ-
ences between pictures from different time points taken with similar imaging properties (in
particular) exposure time are negligibly small, such that a re-simulation of the statistic MR
is clearly not required.
Numerical simulations indicate that the reconstruction can be difficult close to the edges of
an image. Moreover, the PSF can be substantially different close to the edges as well (see ?).
Hence, we propose to focus on the most central part of the image for determining the value
of the statistic MR. For computational reasons it is preferable to have a power of 2 as the
number of pixels along each coordinate direction. Therefore, we use the central quarter of the
image, however this can be changed as appears reasonable for the image under consideration.
Figure 3 shows the smallest and largest partitioning of the image used in the computation of
the multiscale statistic. In general, it is not feasible to use smaller scales to avoid problems
which can be introduced by numerical artifacts, imperfect modeling of the PSF or similar
problems. All these issues can result in a breakdown of the Poisson assumption for single
pixels, where this problem is averaged out to a sufficient extent if a minimum number of
pixels is included in the sum of residuals.
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Figure 4: Simulated multiscale statistic for Poisson residuals. Left: Residuals based on ar-
tificial images generated with constant Poisson parameter approximately equal to the mean
signal in the true images and right: Residuals for the difference of two random images gener-
ated according to the procedure on which the left panel is based. See text for details.

Figure 5: Left: Multiscale statistic for different regularization parameters of the damped
Fourier estimator for the reconstruction of the image at time 0 with confidence limits from
simulations of the multiscale statistic. Right: Results for the test image.

3.3 Data reduction

Based on the methods discussed in the previous sections we suggest the following pipeline for
data analysis.

1. Definition of the PSF for estimator (4). In practical applications, the PSF is often only
imperfectly known and has to be estimated from data. Fortunately, it is known that
the convergence properties of estimators in so-called blind deconvolution problems are
not deteriorated if (additional) data is available for estimation of the PSF (see Hoffman
and Reiss (2008); Hall and Qiu (2007)).

Here, the PSF is estimated from high resolution images of a solid ball of 200nm diameter
(bead), which was imaged at ≈ 7× the resolution of the images of interest along each
axis, i.e. ≈ 50 pixels per pixel in the production images (see Figure 2). Hence, due
to the significantly larger amount of data available, we assume the PSF to be known
a priori. The PSF has the shape of a Laplace distribution with parameter λ, i.e. its
shape is

ψ(x1, x2) =
1

2λ
· exp(−

√
x2

1 + x2
2/λ),

where λ = 0.065 was determined with the method explained above. Whereas the
theoretical results on which our confidence bands are based have not been shown for a
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PSF with the shape of a normal density, we have used it empirically in the simulations
and it turns out to yield on insignificantly different results as compared to the Laplace
PSF results.

2. Selection of the regularization parameter with the multiscale method. For this we use
simulated quantiles of the test statistic, where the simulations are based on an image
with pixel intensities similar to the mean signal in the image at time step 0. For
comparison we have also performed simulations based on the difference of two images,
similar to the previous approach.

In Figure 4 we compare the resulting distributions. To this end, we have generated
artificial images and determined the value of the multiscale statistics for 1000 such
artificial images, where the pixel values are generated as follows. In the left panel,
each pixel value is distributed according to a Poisson distribution with constant Poisson
parameter approximately equal to the mean value of observed counts in the true images,
and in the right panel, each pixel value is the difference between two realizations of the
image generated according to the procedure described for the left panel. Using an image
or a difference map (with much smaller mean count rate than the image) does not have
a significant impact.

Figure 5 shows the multiscale statistic for estimates with the damped spectral cut-off
method in dependence of the regularization parameters from 1000 simulations each.
The horizontal lines indicate 90% confidence intervals determined from the empirical
quantiles of the simulated distributions of the test statistic. We will use a regulariza-
tion parameter of 0.23 in both cases in the subsequent reconstructions. Note that all
regularization parameters given below are in terms of the Nyquist frequency.

3. Reconstruction of the images both with a damped spectral cut-off approach (4) and
determination of the differences between the reconstructed images at different time
steps.

4. Bootstrap simulations of the quantiles for the confidence bands for the difference be-
tween the reconstructions at two different points in time. Here, we use only image pixels
which are at least 5% of the axis length from the edges of the image to avoid problems
with reconstruction at the image edges.

5. Determination of regions of significant change in the difference maps between images.
To this end, we determine whether the observed difference at some pixel position (i, j)
is larger than the 90% or 95% quantile (depending on the significance level α) of the
simulated quantiles. If yes, a significant change is indicated.
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Figure 6: Results for the test image. All regularization parameters given below are in terms
of the Nyquist frequency. See text for details.
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Figure 7: Damped SC method reconstructions for a selection of regularization parameters for
time step 0. All regularization parameters given below are in terms of the Nyquist frequency.
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Figure 8: Damped SC method reconstructions for a selection of regularization parameters for
the difference between time steps 0 and 3. All regularization parameters given below are in
terms of the Nyquist frequency.
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Figure 9: Significant differences between time steps 1 and 0 and 3 and 0 from different
methods. Left: Regions with significant change with time of the image. Right: Difference
maps overlayed on the image at time 0. In the middle of the right pictures from time-point
1 to 3 the budding of a small vesicle from a larger tubular structure can be observed.

4 Results

In a first step we have used artificial data to test the estimator in combination with the
multiresolution method for feasibility. Figure 6 shows the results for the damped spectral
cut-off estimator and the multiresolution parameter selection method for a test image with
approximately the same mean Poisson parameter in the central part of the image (which is
essentially used in the determination of the multiresolution statistic). Both from a visual se-
lection of the optimal regularization parameters and the multiresolution statistic we conclude
on optimal regularization parameters which are the same (and the images for regularization
parameters 0.07 and 0.085 as most preferable choices).
In the second part of our numerical study we have applied our method to the Hela cell data.
Figures 7 and 8 present the estimates for some regularization parameters for the image at
time step 0 and for the difference between the images at time steps 0 and 3. Note that the
multiresolution method indicates a best choice for the regularization parameter of 0.23.
In more detail, living HeLa cells were stained with the fluorescent dye DiI which labels lipid
membranes in the cell. These so called intracellular transport compartments consist of round
vesicular and tubular structures (see lower picture on the left side of Figure 9). The vesicles
and micro-tubules mediate intracellular transport processes and are rapidly moving within the
cell. The presented method is also suited to detect structural changes of biological relevance
in the observed object: E. g. in the middle of the right pictures of Figure 9 the budding of a
round vesicle from a tubular structure can be observed between the time-points 1 and 3. A
second example in the center of the upper right picture of Figure 9 shows the budding of two
vesicles from a tubular structure : At time step 3 a tubular structure is located in the middle
of the center cell. At time step 7 in the bottom right picture two small vesicular structures
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(in yellow) have been emerging from the tubular structure which shows the pinching off of
two vesicles.

5 Discussion

The results indicate that the method presented above provides biologically relevant infor-
mation on small scale structural changes in time resolved fluorescence microscopy of living
cells. Intracellular transport, which was monitored in the present experiment, plays a vital
role in the functioning of an organism. It is e. g. involved in receptor signaling processes in
the nervous system and the immune system. Defects in intracellular trafficking in the ner-
vous system play a key role in the onset of neurodegenerative disorders such as Alzheimer’s
or Huntington’s disease. In summary, this method may contribute to elucidate processes of
intracellular trafficking in living cells and thereby also provide insight into defects of these
transport processes which may lead to neurodegenerative diseases.

Acknowledgements. This work has been supported in part by the Collaborative Research
Center “Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt C4) of
the German Research Foundation (DFG).

6 Auxiliary results

Lemma 2. Suppose that Assumptions 1, 2 and 3 are satisfied and that nanh
2 → 0 for n→∞.

Then

(i)

sup
y∈[0,1]2

∣∣f̂n(y)− E
[
f̂n(y)

]∣∣ =


O
(

1
nanhβ

+ hSf + a
SFg
n h−β(anh)SFη

)
γ ∈ N

O
(

1
nanhβ

+ hSf + a
SFg
n h−β(anh)bγc∧SFη

)
γ /∈ N,

where Sf and SFg denote the constants defined in Assumption 1.

(ii) With the definition

vn(y) :=
g(y) ‖K‖2

(2π)4n2a2
nh

2+2β
(18)

the following asymptotic expansion holds for the variance of the estimator f̂n:

Var
[
f̂n(y)

]
= vn(y) + o

(
1

n2a2
nh

2+2β

)
.

Lemma 3. Suppose that Assumptions 2 and 3 are satisfied and recall that β = β′ · γ,
1/Fψ(ξξξ) = (P (ξξξ))γ , where P is a polynomial of degree β′. Define

Ψ(ξξξ) :=
∑

(i,j)∈{0,...,β′}2
i+j=β′

ai,jξξξ
(i,j) and K(z) :=

∫
R2

Fη(ξξξ)Ψ(ξξξ) exp(iξξξT z) dξξξ. (19)

Then the following properties hold:
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(i) sup
ξξξ∈[−1,1]2

∣∣∣ hβ

Fψ
( ξξξ
h

) −Ψ(ξξξ)
∣∣∣ = O(h).

(ii) ‖hβKn −K‖p = O(h), for all p ∈ [2,∞).

(iii) Recall that SFη is the degree of smoothness of Fη (see Assumption 2). If γ ∈ N, all
partial derivatives of order ααα ∂αααhβFη/Fψ(·/h) are bounded for all |ααα| ≤ SFη:

lim
n→∞

∥∥∥∂αααhβ Fη
Fψ(·/h)

∥∥∥
∞
<∞. (20)

(iv) If γ /∈ N, (20) holds for all double-indices ααα with |ααα| ≤ min{SFη, bγc}.

(v) There exists a constant C such that∣∣∣∂αααhβ( Fη(ξξξ)

Fψ
( ξξξ
h

))− ∂ααα(Fη(ξξξ)Ψ(ξξξ)
)∣∣∣ ≤ ChI[−1,1]2(ξξξ),

if |ααα| = 1.

(vi) a) For all ααα ∈ N2 the following estimate is valid:∫
[−1/(anh),1/(anh)]2

∣∣hβ∂αααKn(z)− ∂αααK(z)
∣∣ dz = O

(
h
√

log(n)
)
.

b) For all ααα ∈ N2, j = 1, 2 the following order of convergence is obtained:∫
R

∣∣hβ∂αααKn((z1, z2))− ∂αααK(z1, z2)
∣∣ dzj = O

(
h
)
.

Lemma 4. Suppose that Assumption 1 holds and recall that Si,j is defined as the (i, j)-th
partial sum of the standardized Poisson variables Yk,l from model (2), that is,

Si,j =
i∑

k=1

j∑
l=1

εk,l with εk,l =
Yk,l − g(xk,l)√

g(xk,l)
.

There exists a Wiener field W on [0,∞)2 such that for arbitrarily small µ > 0

sup
(i,j)∈{1,...,n}2

∣∣S(i,j) −W (i, j)
∣∣ = o(nµ) a.s.

Lemma 5. Let {W (t) | t ∈ R2} be a Wiener sheet, K some kernel with either bounded Fourier
transform |FK| ≤ K∗ or finite L1-norm ‖K‖1 < ∞ whose partial derivatives ∂αααK of order
up to |ααα| = 3 exist and are square-integrable. Then, if h = hn → 0, the field

Zn(x) :=
1

h

∫
R2

K
(x− y

h

)
dW (y)

satisfies

sup
x∈[0,1]2

|Zn(x)| = OP
(√

log(n)
)
.
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Lemma 6. Let g̃n be the following estimator for g = Tψf :

g̃n(y) =
1

(2π)2

∫
R2

F ĝ(ξξξ) exp(iξξξTy)Fη(hξξξ) dξξξ.

Under the assumptions of Corollary 1

sup
(y1,y2)∈R2

|g̃n(y1, y2)− g(y1, y2)| = o
( 1√

log(n)

)
a.s.

The following simple observation allows us to transfer the convergence result for g̃n from
Lemma 6 to the estimator ĝn defined in (11). If the function g is bounded from below and
above, g∗ ≤ g ≤ G∗ we find

‖g − ĝn‖∞ ≤ ‖g − g̃n‖∞

Corollary 4. Under the assumptions of Corollary 1

sup
(y1,y2)∈R2

|ĝn(y1, y2)− g(y1, y2)| = o
( 1√

log(n)

)
a.s.
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7 Proofs

7.1 Proofs of the main results

Proof of Theorem 1

Note that by the assumptions of the theorem Lemma 2 implies

sup
y∈[0,1]2

∣∣f̂n(y)− E
[
f̂n(y)

]∣∣ = o
( 1√

log(n)

)
.

Thus, we only need to consider the stochastic part f̂n(y)−E[f̂n(y)]. In the subsequent proof
we aim at approximating the standardized quantity

Zn,0(y) := v
− 1

2
n (y)

(
f̂n(y)− E[f̂n(y)]

)
=

hβ

‖K‖2
√
g(y)nanh

n∑
i,j=−n

(
Y(i,j) − g(xi,j)

)
Kn

(y − xi,j
h

)
(21)

by a suitable Gaussian process uniformly with respect to the variable y ∈ [0, 1]2. To this end
we split the grid of indices {−n, . . . , n}2 into the intersections with the four quadrants in R2

and the intersection with the axes, that is,

{−n, . . . , n}2 = In,−,− ∪̇ In,−,+ ∪̇ In,+,− ∪̇In,+ ∪̇ Rn,

where Rn = {0} × {−n, . . . , n} ∪ {−n, . . . , n} × {0}, In,−,+ = {−n, . . . ,−1} × {1, . . . , n} and
so on. We first show an approximation result for the sum over the index-set In,+,+. The result
implies the respective results for the sums over the remaining quadrants. Finally we show
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that the sum over Rn is negligible.

The approximation is realized in several steps. We start with the initial process Z+
n,0 :

Z+
n,0(y) := v

− 1
2

n (y)
(
f̂n(y)− E[f̂n(y)]

)
=

hβ

‖K‖2
√
g(y)nanh

n∑
i,j=1

(
Y(i,j) − g(xi,j)

)
Kn

(y − xi,j
h

)
(22)

In the first step (22) is approximated by

Z+
n,1(y) :=

hβ√
g(y)nanh

{ n∑
i,j=1

W (i, j)

∫
[xi,j ,xi+1,j+1]

∂
(1,1)
z K̃n,y(z) dz

−
n−1∑
i=0

W (i, n)

∫
[xi,xi+1]

∂
(0,1)
z K̃n,y

( 1

an
, z2

)
dz2

−
n−1∑
j=0

W (n, j)

∫
[xj ,xj+1]

∂
(1,0)
z K̃n,y

(
z1,

1

an

)
dz1

+W (n, n)K̃n,y(xn,n)

}
, (23)

uniformly in y with an error of sufficiently small magnitude, where

K̃n,y(xi,j) :=

√
g(xi,j)

‖K‖2
Kn

(y − xi,j
h

)
.

Subsequently (23) will be is approximated by the integral

Z+
n,2(y) :=

hβ

h
√
g(y)

∫
[0,1/an]2

K̃n,y(z) dW (z). (24)

In order to get to (25)

Z+
n,3(y) :=

hβ

‖K‖2h

∫
[0,1/an]2

Kn

(y − z

h

)
dW (z), (25)

from (24) the localizing property of the scale family of kernels is used.

In two final steps the sequence of kernels Kn is replaced by the limit kernel K, defined in
(19), and the domain of integration is extended from [0, 1/an]2 to [0,∞). Those approximation
steps are performed in Lemma 7 to Lemma 11. The corresponding approximating quantities
are

Z+
n,4(y) :=

1

‖K‖2h

∫
[0,1/an]2

K
(y − z

h

)
dW (z) (26)

and

Z+
n,5(y) :=

1

‖K‖2h

∫
[0,∞)2

K
(y − z

h

)
dW (z). (27)
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Step 1 of the proof of Theorem 1: Z+
n,0 −→ Z+

n,1

Lemma 7. Under the assumptions of Theorem 1 there exist a Wiener field on a suitable
probability space and a small constant ν > 0 such that

sup
y∈[0,1]2

∣∣Z+
n,0(y)− Z+

n,1(y)
∣∣ = O(n−ν) a.s.

Proof. Define

εi,j :=
Yi,j − g(xi,j)√

g(xi,j)
.

Then
{
εi,j | (i, j) ∈ {1, . . . , n}2

}
is a field of independent, centered random variables with unit

variances and

Z+
n,0(y) =

hβ√
g(y)nanh

n∑
i,j=1

εi,jK̃n,y(xi,j). (28)

We now define the double-indexed partial sum Sk,l of the εi,j by

Sk,l :=
k∑
i=1

l∑
j=1

εi,j , Sk,l ≡ 0 if i · j = 0.

Using the identity

εi,j = Si,j − Si−1,j + Si−1,j−1 − Si,j−1,

we obtain

Z+
n,0(y) =

hβ√
g(y)nanh

{ n∑
i,j=1

Si,j
(
K̃n,y(xi+1,j+1)− K̃n,y(xi+1,j) + K̃n,y(xi,j)− K̃n,y(xi,j+1)

)
−
n−1∑
i=0

Si,n
(
K̃n,y(xi+1,n)− K̃n,y(xi,n)

)
−
n−1∑
j=0

Sn,j
(
K̃n,y(xn,j+1)− K̃n,y(xn,j)

)
+ Sn,nK̃n,y(xn,n)

}
.

Next, we make use of the following three identities

K̃n,y(xi+1,j+1)− K̃n,y(xi+1,j) + K̃n,y(xi,j)− K̃n,y(xi,j+1) =

∫
[xi,j ,xi+1,j+1]

∂
(1,1)
z K̃n,y(z) dz,

K̃n,y(xi+1,n)− K̃n,y(xi,n) =

∫
[xi,xi+1]

∂
(0,1)
z K̃n,y

( 1

an
, z2

)
dz2,
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and

K̃n,y(xn,j+1)− K̃n,y(xn,j) =

∫
[xj ,xj+1]

∂
(1,0)
z K̃n,y

(
z1,

1

an

)
dz1.

Let W be the Wiener sheet defined in Lemma 4. We obtain∣∣Z+
n,0(y)− Z+

n,1(y)
∣∣ ≤ hβ√

g(y)nanh
sup

0≤i,j≤n

∣∣Si,j −W (i, j)
∣∣{∫

[0,1/an]2
|∂(1,1)

z K̃n,y(z)| dz

+

∫
[0,1/an]

|∂(0,1)
z K̃n,y

( 1

an
, z2

)
| dz2 +

∫
[0,1/an]

|∂(1,0)
z K̃n,y

(
z1,

1

an

)
| dz1 + |K̃n,y(xn,n)|

}
By Lemma 3 we find the estimate∣∣Z+

n,0(y)− Z+
n,1(y)

∣∣ ≤ 1

nanh
sup

0≤i,j≤n

∣∣Si,j −W (i, j)
∣∣C(g∗, G∗)

[
‖∂(1,1)K‖1

+ ‖∂(1,0)K‖1 + ‖∂(0,1)K‖1 + ‖K‖∞ +O
(√

log(n)h
)]
,

where all the estimates on the right hand side are independent of the variable y. Hence, by
Lemma 4

sup
y∈[0,1]2

∣∣Z+
n,0(y)− Z+

n,1(y)
∣∣ = O

( nµ

nanh

)
a.s.,

for some arbitrarily small µ > 0. Since, by the assumptions of Theorem 1, nanh
1+β →∞ as

n→∞, β ≥ 1, we can find a positive constant µ such that for some small constant ν > 0

nµ

nanh
= o
(
n−ν

)
,

which concludes the proof of this lemma.

Step 2 of the proof of Theorem 1 : Z+
n,1 −→ Z+

n,2

Lemma 8. Under the assumptions of Theorem 1

sup
y∈[0,1]2

∣∣Z+
n,1(y)− Z+

n,2(y)
∣∣ = OP

(√
log(n)

)
.

Proof. Integration by parts and scaling of the Wiener sheet gives

Z+
n,2(y) =

hβ

anh
√
g(y)

{∫
[xi,j ,xi+1,j+1]

∂
(1,1)
z K̃n,y(z)W (anz) dz

−
∫

[xi,xi+1]
∂

(0,1)
z K̃n,y

( 1

an
, z2

)
W (1, anz2) dz2

−
∫

[xj ,xj+1]
∂

(1,0)
z K̃n,y

(
z1,

1

an

)
W (anz1, 1) dz1

+W (1, 1)K̃n,y(xn,n)

}
,
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since W (i, j) = 0 if i · j = 0. Hence

Z+
n,2(y)− Z+

n,1(y) =
hβ

anh
√
g(y)

n∑
i,j=1

∫
[xi,j ,xi+1,j+1]

∂
(1,1)
z K̃n,y(z)

(
W (i/n, j/n)−W (anz)

)
dz

−
n−1∑
i=0

∫
[xi,xi+1]

∂
(0,1)
z K̃n,y

( 1

an
, z2

)(
W (1, anz2)−W (i/n, 1)

)
dz2

−
n−1∑
j=0

∫
[xj ,xj+1]

∂
(1,0)
z K̃n,y

(
z1,

1

an

)(
W (1, j/n)−W (anz1, 1)

)
dz1

}
.

By the modulus of continuity of the Wiener sheet (see ?, Theorem 3.2.1) we obtain

lim sup
n→∞

sup
s,t∈[0,1]2

|si−ti|< 1
n
,i=1,2

|W (s)−W (t)|√
1
n log(n)

≤ 48.

Thus∣∣Z+
n,1(y)− Z+

n,2(y)
∣∣ ≤ hβ

√
log(n)

g(y)
√
nanh

sup
s,t∈[0,1]2

|si−ti|< 1
n
,i=1,2

|W (s)−W (t)|√
1
n log(n)

{∫
[0,1/an]2

|∂(1,1)
z K̃n,y(z)| dz

+

∫
[0,1/an]

|∂(0,1)
z K̃n,y

( 1

an
, z2

)
| dz2 +

∫
[0,1/an]

|∂(1,0)
z K̃n,y

(
z1,

1

an

)
| dz1 + |K̃n,y(xn,n)|

}
.

Similar to the proof of Lemma 7 we conclude

∣∣Z+
n,1(y)− Z+

n,2(y)
∣∣ = OP

(√log(n)

han
√
n

)
= oP

( 1√
log(n)

)
.

Step 3 of the proof of Theorem 1: Z+
n,2 −→ Z+

n,3

Lemma 9. Under the assumptions of Theorem 1

sup
y∈[0,1]2

|Z+
n,2(y)− Z+

n,3(y)| = OP (
√

log(n)h)

Proof. Recall that

Z+
n,2(y) :=

hβ

h
√
g(y)

∫
[0,1/an]2

K̃n,y(z) dW (z)

=
hβ

h
√
g(y)‖K‖2

∫
[0,1/an]2

√
g(z)Kn

(y − z

h

)
dW (z).

With the definition

G(y, z) :=
√
g(y) +

z1 − y1

2
√
g(y)

∂(1,0)g(y) +
z2 − y2

2
√
g(y)

∂(0,1)g(y)
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we obtain the following decomposition of Zn,2(y):

Zn,2(y) =
hβ

h
√
g(y)‖K‖2

∫
[0,1/an]2

G(y, z)Kn

(y − z

h

)
dW (z)

+
hβ

h
√
g(y)‖K‖2

∫
[0,1/an]2

(√
g(z)−G(y, z)

)
Kn

(y − z

h

)
dW (z)

=: Z+
n,2,I(y) + Z+

n,2,II(y),

where Z+
n,2,I(y) and Z+

n,2,II(y) are defined in an obvious manner. Notice that

Z+
n,2,I(y) = Z+

n,3(y) +
hβ∂(1,0)g(y)

2
√
g(y)‖K‖2

∫
[0,1/an]2

z1 − y1

h
Kn

(y − z

h

)
dW (z)

+
hβ∂(0,1)g(y)

2
√
g(y)‖K‖2

∫
[0,1/an]2

z2 − y2

h
Kn

(y − z

h

)
dW (z).

Further

Z+
n,2,I(y) = Z+

n,3(y) +
∂(1,0)g(y)‖K‖2

2
√
g(y)

∫
[0,1/an]2

z1 − y1

h

(
hβKn −K

)(y − z

h

)
dW (z)

+
∂(0,1)g(y)

2
√
g(y)‖K‖2

∫
[0,1/an]2

z2 − y2

h

(
hβKn −K

)(y − z

h

)
dW (z)

+
∂(1,0)g(y)

2
√
g(y)‖K‖2

∫
[0,1/an]2

z1 − y1

h
K
(y − z

h

)
dW (z)

+
∂(0,1)g(y)

2
√
g(y)‖K‖2

∫
[0,1/an]2

z2 − y2

h
K
(y − z

h

)
dW (z)

=: Z+
n,3(y) +

hβ

2
√
g(y)

(
Z+,1
n,2,I(y) + Z+,2

n,2,I(y) + Z+,3
n,2,I(y) + Z+,4

n,2,I(y)
)
.

Define

Z̃n,2,3(y) :=
CG∗

‖K‖h

∫
R2

FI[−1,1]2

(y − z

h

)
dW (z),

where C is the constant defined in Lemma 3 (v). Then, since I[−1,1]2 is compactly supported,
all derivatives of FI[−1,1]2 exist and are square-integrable and |F(FI[−1,1]2)| = |I[−1,1]2 | ≤ 1.
By Corollary 2.2.8 in ? we find

E
[

sup
y∈[0,1]2

|Z̃n,2,3(y)|
]

= O
(√

log(n)
)
.

Further, by the Plancherel equality

E
∣∣Z̃n,2,3(s)− Z̃n,2,3(t)

∣∣2 =
C2

‖K‖2

∫
[−1,1]2

∣∣∣exp
(
iξξξT

t

h

)
− exp

(
−iξξξT s

h

)∣∣∣2 dξξξ.
E
∣∣Z+,1

n,2,I(s)− Z
+,1
n,2,I(t)

∣∣2 ≤ E
∣∣Z̃n,2,3(s)− Z̃n,2,3(t)

∣∣2 ∀ s, t ∈ [0, 1]2,
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by Lemma 3 (v) since∣∣∣z1 − y1

h

(
hβKn −K

)(y − z

h

)∣∣∣ =

∣∣∣∣ 1

(2π)3

∫
∂(0,1)

( Fη(ξξξ)

Fψ
( ξξξ
h

) −Fη(ξξξ)Ψ(ξξξ)
)

exp
(
−iξξξT y − z

h

)
dξξξ

∣∣∣∣.
Hence, by the Sudakov-Fernique comparison inequality (see, e. g. ?, Theorem 2.2.3) it follows
that

E
[

sup
y∈[0,1]2

|Z+,1
n,2,I(y)|/h

]
≤ E

[
sup

y∈[0,1]2
|Z̃n,2,3(y)|

]
= O

(√
log(n)

)
.

Thus

sup
y∈[0,1]2

|Z+,1
n,2,I(y)| = OP

(√
log(n)h

)
.

Along the same line of arguments we obtain

sup
y∈[0,1]2

|Z+,j
n,2,I(y)| = OP

(√
log(n)h

)
j = 2, 3, 4,

by comparing Z+,3
n,2,I and Z+,4

n,2,I to the Gaussian fields

G∗

‖K‖2

∫
zj − yj
h

K
(y − z

h

)
dW (z) j = 1, 2.

By Assumption 1 the derivatives ∂αααg, |ααα| = 1 and the function 1/
√
g are Lipschitz-continuous.

Thus, there exists a constant D such that∣∣√g(z)−G(y, z)
∣∣ ≤ D(|z1 − y1|+ |z2 − y2|

)
.

The assertion of the lemma now follows by a repetition of the steps for the estimation of
Z+
n,2,I(y) for the field Z+

n,2,II(y).

Step 4 of the proof of Theorem 1: Z+
n,3 −→ Z+

n,4

Lemma 10.

sup
y∈[0,1]2

|Z+
n,3(y)− Z+

n,4(y)| = OP
(
h
√

log(n)
)

Proof. Define

Z̃n,3,4(y) :=
CE
‖K‖

∫
R2

η
(y − z

h

)
dW (z),

where η is the function defined in Assumption 2. Then ‖Fη‖ ≤ 1 and, since Fη is compactly
supported, η is smooth and each derivative ∂αααη, ααα ∈ N2

0 is square integrable. Again, by
Corollary 2.2.8 in ?,

E
[

sup
y∈[0,1]2

|Z̃n,3,4(y)|
]

= O
(√

log(n)h
)
.
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and

Ẽn,s,t := E
∣∣Z̃n,3,4(s)− Z̃n,3,4(t)

∣∣2
=

C2
E

‖K‖

∫
R2

∣∣∣η(s− z

h

)
− η
(t− z

h

)∣∣∣2 dz
=
h2C2

E

‖K‖

∫
R2

∣∣∣Fη(z)
(

exp
(
iξT

t

h

)
− exp

(
−iξT s

h

))∣∣∣2 dz,
where the last equality follows from the Plancherel identity.

Es,t := E
∣∣Z+

n,2(s)− Z+
n,3(s)− (Z+

n,2(t)− Z+
n,3(t))

∣∣2
=

1

h2‖K‖

∫
R2

∣∣∣(hβKn −K)
(s− z

h

)
− (hβKn −K)

(t− z

h

)∣∣∣2 dz
=

1

‖K‖

∫
R2

∣∣∣(hβKn −K)
( s
h
− z
)
− (hβKn −K)

( t
h
− z
)∣∣∣2 dz.

As before, the Plancherel identity yields

Es,t =
1

‖K‖

∫
R2

∣∣∣Fη(z)
( hβ

FΨ( ξh)
−Ψ(ξ)

)(
exp
(
iξT

t

h

)
− exp

(
−iξT s

h

))∣∣∣2 dξξξ
≤
h2C2

E

‖K‖

∫
R2

∣∣∣Fη(z)
(

exp
(
iξT

t

h

)
− exp

(
−iξT s

h

))∣∣∣2 dξξξ = Ẽn,s,t,

where the last estimate follows from Lemma 3 (i). Since En,s,t ≤ Ẽn,s,t for all s, t ∈ [0, 1]2 and

E[Z̃n,3,4(y)] = E[Z+
n,3(y) − Z+

n,4(y)] = 0 for all y ∈ [0, 1]2 it follows by the Sudakov-Fernique
comparison inequality (see, e. g. ?, Theorem 2.2.3)

E
[

sup
y∈[0,1]2

|Z+
n,3(y)− Z+

n,4(y)|
]
≤ E

[
sup

y∈[0,1]2
|Z̃n,3,4(y)|

]
= O

(
h
√

log(n)
)
,

which implies

sup
y∈[0,1]2

|Z+
n,3(y)− Z+

n,4(y)| = OP
(
h
√

log(n)
)
.

Step 5 of the proof of Theorem 1: Z+
n,4 −→ Z+

n,5

Lemma 11. Under the assumptions of Theorem 1

sup
y∈[0,1]2

|Z+
n,4(y)− Z+

n,5(y)| = OP
(
han

√
log(n)

)
.

Proof. Define

∆n,4,5(y) := Z+
n,5(y)− Z+

n,4(y)

=
1

h‖K‖2

∫ (
I[0,∞)(y)− I[0,1/an]2(z)

)
K
(y − z

h

)
dW (z).
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Then

E
∣∣∆n,4,5(s)−∆n,4,5(t)

∣∣2 ≤ 1

h2‖K‖22

∫ 2∑
j=1

I(1/an,∞)(yj)
∣∣∣K(s− z

h

)
−K

(t− z

h

)∣∣∣2 dz.
If yj > 1/an and sj ∈ [0, 1], j = 1, 2 we have∣∣∣sj − yj

h

∣∣∣ > 1

2anh

for sufficiently large n. This implies

2anh
∣∣∣sj − yj

h

∣∣∣ > 1,

which yields the estimate

E
∣∣∆n,4,5(s)−∆n,4,5(t)

∣∣2 ≤ 4a2
n

‖K‖22

∫ 2∑
j=1

∣∣∣sj − yj
h

∣∣∣2∣∣∣K(s− z

h

)
−K

(t− z

h

)∣∣∣2 dz
≤
∫ ∣∣∣∂(0,1)

(
Fη(z)Ψ(z)

)
+ ∂(1,0)

(
Fη(z)Ψ(z)

)∣∣∣2∣∣∣exp
(
iξT

t

h

)
− exp

(
−iξT s

h

)∣∣∣2 dz.
Again, by Gaussian comparison (Theorem 2.2.3, ?) with the Gaussian field

Z̃n,4,5(y) :=
2an
‖K‖

∫
R2

F
(
∂(0,1)

(
FηΨ

)
+ ∂(1,0)

(
FηΨ

))
(ξξξ)
(y − ξξξ

h

)
dξξξ dW (ξξξ)

and a further application of Corollary 2.2.8 in ? we conclude the proof of this lemma.

Step 6 of the proof of Theorem 1: Negligibility of the remainder

Lemma 12. Under the assumptions of Theorem 1

sup
y∈[0,1]2

∣∣∣∣ hβ

‖K‖2
√
g(y)nanh

∑
(i,j)∈Rn

(Y(i,j) − g(xij))Kn

(y − xij
h

)∣∣∣∣ = O

(
1√
nanh

)
a.s.

Proof. Define

εi := Yi,0 − g(xi,0) and Si :=

i∑
j=1

εi, i = 1, . . . , n

and write

Rn(y) =
hβ√
g(y)

n∑
i=1

(Yi,0 − g(xi,0)Kn

(y − xi,0
h

)
=

hβ√
g(y)

n∑
i=1

εiKn

(y − xi,0
h

)
.

It follows that

sup
y∈[0,1]2

|Rn(y)| ≤ 1√
g∗

sup
y∈[0,1]2

∣∣∣∣ n∑
i=1

εi
(
hβKn −K

)(y1 − xi
h

,
y2

h

)∣∣∣∣
+

1√
g∗

sup
y∈[0,1]2

∣∣∣∣ n∑
i=1

εiK
(y1 − xi

h
,
y2

h

)∣∣∣∣.
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Furthermore, since K and 1/h(hβKn−K) are uniformly bounded, it follows for some constant
C > 0

sup
y∈[0,1]2

|Rn(y)| ≤ C sup
0≤c1≤...≤cn≤1

∣∣∣∣ n∑
i=1

ciεi

∣∣∣∣ = C sup
max1≤j≤n

|Sj |

≤ C( sup
max1≤j≤n

|Sj − S̃j |) + C sup
max1≤j≤n

|S̃j |,

where S̃j is a partial sum of independent and identically standard normal random variables
as in Lemma 4 below. Since the increments S̃j are symmetric, it follows by Lévy’s maximal
inequality for all λ > 0

P
(

max
1≤j≤n

|S̃j | > λ
)
≤ 2P

(
|S̃n| > λ

)
.

Hence, by Lemma 4, for any small µ > 0

sup
y∈[0,1]2

|Rn(y)| = O

(
1√
nanh

)
+O

(
1

n1−µanh

)
a.s. = O

(
1√
nanh

)
a.s.

Step 7 of the proof of Theorem 1: Combining the results from steps 1-6

Together, Lemmas 7 to 11 yield

sup
y∈[0,1]2

∣∣∣∣Z+
n,0(y)− 1

h‖K‖2

∫
[0,∞)2

K
(y − z

h

)
dW (z)

∣∣∣∣ = oP

(
log(n)−

1
2

)
. (29)

Let W̃ be a continuous version of the Wiener sheet in the above integral approximation. Set
W̃ (z) = 0 if z1 ∨ z2 < 0. Let {

W̃ααα |ααα ∈ {0, 1}2
}

be four mutually independent copies of W̃ . For z ∈ R2, ααα ∈ {0, 1}2 define

Wααα(z) := W̃ααα((−1)α1z1, (−1)α2z2).

With the same arguments used to prove (29) and an application of Lemma 12 we find for the
full process Zn,0

sup
y∈[0,1]2

∣∣∣∣Zn,0(y)− 1

h‖K‖2

∫
R2

K
(y − z

h

)
dW (z)

∣∣∣∣ = oP

(
log(n)−

1
2

)
,

where W (z) =
∑

ααα∈{0,1}2 Wααα(z) is a Wiener sheet on R2. By the scaling-property of the
integral process we find

sup
y∈[0,1]2

∣∣∣∣1h
∫
R2

K
(y − z

h

)
dW (z)

∣∣∣∣ = sup
y∈ 1

h
[0,1]2

∣∣∣∣∫
R2

K(y − z) dW (z)

∣∣∣∣.
The assertion of Theorem 1 now follows from an application of Theorem 14.2 of ?.

�

33



7.2 Proof of Theorem 2

The proof of Theorem 2 essentially follows the line of proof of Theorem 1. The only difference
is in the estimation of the bias of the estimator f̂n. In order to estimate the bias we use the
representation of the function f in equation (30) below and replace the difference 1− Fη(ξξξ)
by the expansion

1−Fη(ξξξ) = Fη(0)−Fη(ξξξ) = ξ1
∂

∂ξ1
Fη(0) + ξ2

∂

∂ξ2
Fη(0),+

∑
ααα∈{0,1,2}2
|ααα|=2

ξξξααα

ααα!

∂ααα

∂ξα1
1 ∂ξα2

2

Fη(ξξξ)

∣∣∣∣
ξξξ=ξξξ∗

,

where ξξξ∗ is an intermediate point and 0 = (0, 0)T . Here, we make use of the fact that

∂ααα

∂ξα1
1 ∂ξα2

2

Fη(ξξξ) = (−i)αααF
(
·αααη(·)

)
(ξξξ)

and that

‖F
(
·αααη(·)

)
‖∞ ≤ ‖ ·ααα η‖1 ≤ C

for some C <∞ and for all |ααα| ≤ 2. Thus,

|1−Fη(ξξξ)| ≤ |ξ1|
∣∣F(t1η(·)

)
(0)
∣∣+ |ξ2|

∣∣F(t2η(·)
)
(0)
∣∣+ 2C(|ξ1|2 + |ξ2|2 + |ξ1ξ2|)

≤ |ξ1|
∣∣∣∣∫ t1η(t) dt

∣∣∣∣+ |ξ2|
∣∣∣∣∫ t2η(t) dt

∣∣∣∣+ 2C(|ξ1|2 + |ξ2|2 + |ξ1ξ2|).

By symmetry of η we thus find

|1−Fη(ξξξ)| ≤ 2C(|ξ1|2 + |ξ2|2 + |ξ1ξ2|).

Furthermore,

1

(2π)3h2

∣∣∣∣∫
R2

∫
R2

g(z)

Fψ
(
ξξξ
h

)(1−Fη(ξξξ)
)

exp
(
iξξξT

y − z

h

)
dz dξξξ

∣∣∣∣
≤ 1

(2π)3h2

∫
R2

ξ2
1 + ξ2

2 + |ξ1ξ2|∣∣∣Fψ( ξξξh)∣∣∣
∣∣∣∣∫

R2

g(z) exp
(
iξξξT

y − z

h

)
dz

∣∣∣∣ dξξξ.
By a change of variables

1

(2π)3h2

∣∣∣∣∫
R2

∫
R2

g(z)

Fψ
(
ξξξ
h

)(1−Fη(ξξξ)
)

exp
(
iξξξT

y − z

h

)
dz dξξξ

∣∣∣∣
1

(2π)3

∫
R2

h2ξ2
1 + h2ξ2

2 + h2|ξ1ξ2|
|Fψ(ξξξ)|

∣∣∣∣∫
R2

g(z) exp
(
iξξξT (y − z)

)
dz

∣∣∣∣ dξξξ
=
h2

2π

∫
R2

ξ2
1 + ξ2

2 + |ξ1ξ2|
|Fψ(ξξξ)|

|Fψ(ξξξ)||Ff(ξξξ)| dξξξ = O(h2)

by assumption. The claim of the Theorem now follows by Theorem 1 and Lemma 2.
�
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Proof of Lemma 1

Since 0 < g∗ ≤ ĝn ≤ G∗ by definition, conditionally on the data Y, the bootstrap residuals
ε∗i,j := Y ∗i,j − ĝ(xi,j) are distributed according to a centered Poisson distribution for which
all moments exist, because higher moments of the Poisson distribution are polynomials in
the parameter, and are uniformly bounded with respect to the indices (i, j). Hence, the same
arguments as in Lemma 6 apply and the assertion of the lemma follows. �

Proof of Theorem 3

Define the bootstrap analogue Z+∗
n,0 of Z+

n,0 by

Z+∗
n,0(y) :=

hβ

‖K‖2
√
ĝn(y)nanh

n∑
i,j=1

(
Y ∗(i,j) − ĝn(xi,j)

)
Kn

(y − xi,j
h

)
=

hβ

‖K‖2
√
ĝn(y)nanh

n∑
i,j=1

√
ĝn(xi,j)ε

∗
i,jKn

(y − xi,j
h

)
.

Since 0 < g∗ ≤ ĝn ≤ G∗ by definition, conditionally on the data Y, the bootstrap residuals
ε∗i,j := 1/ĝ(xi,j)(Y

∗
i,j − ĝ(xi,j)) are centered, independent with unit variances, where all mo-

ments exist and are uniformly bounded with respect to the indices (i, j). Hence, by Lemma
4, there exists a Wiener field W ∗, defined conditionally on the sample Y, such that

|S(i,j)∗ −W ∗(i, j)| = o∗P (nµ) a.s.

With the same approximation steps as in the proof of Theorem 1 we obtain that Z+∗
n,0 can be

approximated by

1

h‖K‖2

∫
R2

K
(y − x

h

)
dW ∗(z) + o∗P

(
(log(n))−

1
2
)

uniformly with respect to y ∈ [0, 1]2. We further conclude that

P
(

sup
y∈[0,1]2

|Z∗n,5(y)| ≤ κ
∣∣Y) = P

(
sup

y∈[0,1]2
|Zn,5(y)| ≤ κ

)
for all κ ∈ R. An application of Theorem 1 concludes the proof of this theorem.

�

7.3 Proofs of the auxiliary results

Proof of Lemma 2

Recall from Remark 3 (iv) that some useful properties of the reciprocal 1/Fψ of the Fourier
transform of the function ψ, which are implied by Assumption 3, are listed in Lemma 3 in
Section 6. These results can be used to derive convergence properties of the sequence of
kernels (Kn)n∈N which allow for the definition of a “limit kernel” (see (19)).
(i) Recall that

f̂n(y) =
1

(2π)2n2a2
nh

2

n∑
i,j=−n

Yi,jKn

(y − xi,j
h

)
,
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where

Kn(z) =
1

(2π)3

∫
R2

Fη(ξξξ)

Fψ
(
ξξξ
h

) exp(iξξξT z) dz

and Yi,j ∼Poisson
(
g(xi,j)

)
such that

E
[
f̂n(y)

]
=

1

(2π)2n2a2
nh

2

n∑
i,j=−n

g(xi,j)Kn

(y − xi,j
h

)
.

We now express f in terms of its Fourier transform Ff and make use of the relation

Ff =
1

2π

Fg
Fψ

,

which yields

f(y) =
1

(2π)2

∫
R2

Fg(ξξξ)

Fψ(ξξξ)
exp(iξξξTy) dξξξ

=
1

(2π)3

∫
R2

∫
R2

g(z)

Fψ(ξξξ)
exp(iξξξT (y − z)) dz dξξξ

=
1

(2π)3h2

∫
R2

∫
R2

g(z)

Fψ
(
ξξξ
h

)(Fη(ξξξ) + 1−Fη(ξξξ)
)

exp
(
iξξξT

y − z

h

)
dz dξξξ.

Hence

f(y) =
1

(2π)3h2

∫
R2

∫
R2

g(z)

Fψ
(
ξξξ
h

)Fη(ξξξ) exp
(
iξξξT

y − z

h

)
dz dξξξ

+
1

(2π)3h2

∫
R2

∫
R2

g(z)

Fψ
(
ξξξ
h

)(1−Fη(ξξξ)
)

exp
(
iξξξT

y − z

h

)
dz dξξξ. (30)

Further, with the definition An := [−1/an, 1/an]2 we write

f(y) =
1

(2π)3h2

∫
An

g(z)Kn

(y − z

h

)
dz

+
1

(2π)3h2

∫
ACn

g(z)Kn

(y − z

h

)
dz

+
1

(2π)3h2

∫
DC

∫
R2

g(z)

Fψ
(
ξξξ
h

)(1−Fη(ξξξ)
)

exp
(
iξξξT

y − z

h

)
dz dξξξ

=: f1(y) + f2(y) + f3(y),

where f1 and f2 are defined in an obvious manner. To derive the latter decomposition we
used that 1−Fη(ξξξ) = 0 for all ξξξ ∈ D by Assumption 2.

|f3(y)| = 1

2π

∣∣∣∣∫ 1
h
DC
Ff(ξξξ)(1−Fη(ξξξ)) exp(iyTξξξ) dξξξ

∣∣∣∣ ≤ 1

π

∫
1
h
DC
|Ff(ξξξ)| dξξξ = O

(
hSf
)
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by Assumption 1. By Lemma 3 (ii) and (vi) we have

‖Kn −K‖p = O(h) if p ∈ [2,∞) and ‖(Kn −K)IAn‖1 = O(h
√

log(n)).

Straightforward calculations for the integral approximation yield

E
[
f̂n(y)

]
= f1(y) +O

( 1

nanhβ

)
.

We now estimate f2. Notice that Kn can be expressed as a Fourier transform as follows:

Kn(z) = F
(
Fη

Fψ(·/h)
(z)

)
.

(ii) For each double-index (i, j), for which the derivative ∂(i,j)
(
Fη/Fψ(·/h)

)
exists, we find∥∥hβξξξ(i,j)Kn(z)

∥∥
∞ =

∥∥hβF∂(i,j)
(
Fη/Fψ(·/h)

)∥∥
∞ ≤

1

2π

∥∥hβ∂(i,j)
(
Fη/Fψ(·/h)

)∥∥
1

(31)

by the Haussdorf-Young inequality. If γ ∈ N inequality (31) holds for all double-indices (i, j)
with i + j ≤ SFη. If γ /∈ N, γ ≥ 1, inequality (31) holds if i + j ≤ min{SFη, bγc}. Assertion
(i) now follows by Assumption 2, Assumption 3 and claim (v) of Lemma 3 in Section 6.

For the variance of the estimator we obtain

Var
[
f̂n(y)

]
=

1

(2π)4n4a4
nh

4

n∑
i,j=−n

g(xi,j)K
2
n

(y − xi,j
h

)
=

1

(2π)4n2a2
nh

4

(∫
An

g(z)K2
n

(y − z

h

)
dz +O

( 1

nanh2β

))
=

1

(2π)4n2a2
nh

4

(∫
R2

g(z)K2
n

(y − z

h

)
dz +O

(
h−2βa

2SFg
n (h2a2

n) +
1

nanh2β

))
=

1

(2π)4n2a2
nh

2+2β

(
g(y)‖K‖2 +O

(
h+ a

2SFg+2
n +

1

nanh2

))
.

�

Proof of Lemma 3

(i) By definition

hβ

Fψ
(
ξξξ
h

) = hβ
′γ

(
P
(ξξξ
h

))γ
= hβ

( ∑
(i,j)∈{0,...,β′}2

i+j≤β′

ai,j

(ξξξ
h

)(i,j)
)γ

=

( ∑
(i,j)∈{0,...,β′}2

i+j=β′

ai,jξξξ
(i,j) +

∑
(i,j)∈{0,...,β′}2

i+j<β′

ai,jh
β′−i−jξξξ(i,j)

)γ
.

Consider the function F : R→ R with F (x) = xγ , γ ≥ 1. By Taylor’s theorem

F (x)− F (x0) = F ′(x0) + o(|x− x0|)
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and hence, for x = hβP (ξξξ/h) and x0 = Ψ(ξξξ)

sup
ξξξ∈[−1,1]2

∣∣∣ hβ

Fψ(ξξξ)
−Ψ(ξξξ)

∣∣∣ = sup
ξξξ∈[−1,1]2

γ
∣∣∣ ∑
(i,j)∈{0,...,β′}2

i+j=β′

ai,jξξξ
(i,j)
∣∣∣γ−1∣∣∣hβP(ξξξ

h

)
−Ψ(ξξξ)

∣∣∣+ o(h),

since there exists a constant C <∞ such that |x− x0| ≤ Ch for all ξξξ ∈ [−1, 1]2.

(ii) For p ≥ 2 and q such that 1/p+ 1/q = 1 the Hausdorff-Young inequality yields

‖hβKn −K‖p =
∥∥∥F[ hβFη
Fψ(·/h)

−FηΨ
]∥∥∥

p

≤ 1

(2π)
2
q
−1

∥∥∥ hβFη
Fψ(·/h)

−FηΨ
∥∥∥
q
.

The claim now follows from (i) since Fη is bounded and compactly supported on [−1, 1]2.

(iii) For γ ∈ N we can assume without loss of generality that γ = 1 (see Remark 3). In this
case all partial derivatives of order SFη of Fη and 1/Fψ(·/h) exist. An application of
the general Leibniz rule gives

∂ααα
(
Fη

Fψ(·/h)

)
=

∑
{ααα′:ααα′≤ααα}
|ααα|≤SFη

(
ααα

ααα′

)
∂ααα−ααα

′(Fη)∂ααα′( 1

Fψ(·/h)

)
,

where (
ααα

ααα′

)
=

ααα!

ααα′!(ααα−ααα′)!
=

α1!α2!

α′1!α′2!(α1 − α′1)!(α2 − α′2)!
.

This yields

∂ααα
′
( hβ

Fψ(ξξξ/h)

)
=

∑
(i,j)∈{0,...,β′}2

i+j=β′

ai,j∂
ααα′ξξξ(i,j) +

∑
(i,j)∈{0,...,β′}2

i+j<β′

ai,j∂
ααα′hβ

′−i−jξξξ(i,j),

which is uniformly bounded in both ξξξ ∈ [−1, 1]2 and n ∈ N for all multi-indices ααα′ with
|ααα′| ≤ SFη.

(iv) Assertion (iv) follows from (iii) by multiple applications of the chain rule.

(v) The proof of (v) follows the line of proof of (iii) and (iv).

(vi) a) Consider first the case of ααα = (0, 0), that is∫
[−1/(anh),1/(anh)]2

∣∣hβKn(z)−K(z)
∣∣ dz

=

∫
[−1/(anh),1/(anh)]2

∣∣hβKn(z)−K(z)
∣∣√1 + z2

1 + z2
2√

1 + z2
1 + z2

2

dz

≤
(∫

R2

∣∣hβKn(z)−K(z)
∣∣2(1 + z2

1 + z2
2) dz

) 1
2
(∫

[−1/(anh),1/(anh)]2

1

1 + z2
1 + z2

2

dz

) 1
2

,
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By the Cauchy-Schwarz inequality and using polar coordinates we obtain∫
[−1/(anh),1/(anh)]2

1

1 + z2
1 + z2

2

dz = 2π

∫
(0,1/(anh)]

r

1 + r2
dr = π log(1 + (anh)2) = O(log(n)).

Next, the Plancherel identity and an application of (v) yields∫
R2

∣∣hβz1Kn(z)− z1K(z)
∣∣2 dz =

∫
R2

∣∣∣hβ∂(1,0) Fη(ξξξ)

Fψ
( ξξξ
h

) − ∂(1,0)Fη(ξξξ)Ψ(ξξξ)
∣∣∣2 dξξξ

≤ C2h2

∫
R2

I[−1,1]2(ξξξ) dξξξ.

Combining the latter results, an application of (ii) finally yields∫
[−1/(anh),1/(anh)]2

∣∣hβKn(z)−K(z)
∣∣ dz = O

(
h
√

log(n)
)
.

Since

∂αααKn = CαααF−1
(ξξξαααFη(ξξξ)

Fψ
( ξξξ
h

) ) and ∂αααK = CαααF−1
(
ξξξαααFη(ξξξ)Ψ(ξξξ)

)
for a constant Cααα ∈ C, the same arguments as above apply to the integrals∫

[−1/(anh),1/(anh)]2

∣∣hβ∂αααKn(z)− ∂αααK(z)
∣∣ dz, |ααα| > 0,

since multiplication with ξξξααα does neither change the smoothness properties nor the
integrability properties of the functions Fη(ξξξ)

Fψ
(
ξξξ
h

) and Fη(ξξξ)Ψ(ξξξ), by the fact that Fη is

compactly supported.

(vi) b) Consider first the case of ααα = (0, 0). Then∫
R

∣∣hβKn((z1, z2))−K(z1, z2)
∣∣ dzj

=

(∫
R

1

1 + z2
j

dzj

) 1
2
(∫

R

∣∣hβKn((z1, z2))−K(z1, z2)
∣∣2(1 + z2

j ) dzj

) 1
2

.

The claim now follows with the same arguments as used to prove (vi)a).

�

Proof of Lemma 4

For a fixed constant µ > 0 let M be an even, (large) positive integer (M ∈ 2N) such that
M · µ > 3. By Assumption 1 we obtain

‖gM̃‖1 ≤
(
G∗
)M̃−1‖g‖1 <∞ for all M̃ ≤M. (32)
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Since (32) holds true for all M ∈ 2N we can choose µ arbitrarily small. Further

E
[
εMi,j
]

= E
[

(Yk,l − g(xk,l))
M√

g(xk,l)M

]
=

E
[
(Yk,l − g(xk,l))

M
]√

g(xk,l)M
=
P
M̃

(g(xi,j))√
g(xk,l)M

, (33)

where P
M̃

is some polynomial of degree M̃ ≤M .
Define

LM :=
n∑

i,j=1

E
∣∣εi,j∣∣M =

n∑
i,j=1

EεMi,j ,

since M ∈ 2N. From relations (32) and (33) it follows that there exists a constant C(g∗, G∗)
such that

1

n2a2
n

LM ≤ C(g∗, G∗)‖g‖1. (34)

Let Φ : {1, . . . n2} → {1, . . . n}2 be a bijective map that satisfies the additional requirement
Φ(k2) = (k, k) for all k ≤ n and

Φ
(
{(k − 1)2 + 1, . . . , k2}

)
= {(i, j) | 1 ≤ i ≤ k, j = k} ∪ {(i, j) | 1 ≤ j < k, i = k}.

This way the quadratic sums coincide

k2∑
j=1

ZΦ(j) =

k∑
i=1

k∑
j=1

Zi,j

just the order of summation might differ. By Corollary 5.4 of ? there exists a field of
independent identically N (0, 1)-distributed random variables {Zi,j | (i, j) ∈ N2} ordered in
such a way that for

W (i, j) :=
i∑

k=1

j∑
l=1

Zk,l

and ν > 0

P
(∣∣∣ n∑

i=1

εΦ(i) −
n∑
i=1

ZΦ(i)

∣∣∣ > CMnν
)
≤ LM
nn·M

+ P
(

max
1≤i≤n

∣∣εΦ(i) − ZΦ(i)

∣∣ > nν
)

and consequently

P
(∣∣S(n,n) −W (n, n)

∣∣ > CMn2ν
)

= P
(∣∣S(Φ(n2)) −W (Φ(n2))

∣∣ > CMn2ν
)
≤ LM
n2ν·M + P

(
max

1≤i≤n2
|εΦ(i) − ZΦ(i)| > n2ν

)
. (35)

We now estimate the second term on the right hand side of inequality (35). We set µ := 2ν
and find

P
(

max
1≤i≤n2

|εΦ(i) − ZΦ(i)| > nµ
)
≤ P

(
max

1≤i≤n2
|εΦ(i)|+ max

1≤i≤n2
|ZΦ(i)| > nµ

)
≤ P

(
max

1≤i≤n2
|εΦ(i)| >

nµ

2

)
+ P

(
max

1≤i≤n2
|ZΦ(i)| >

nµ

2

)
.
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Since the Zi,j are iid standard normally distributed with distribution function φ we find

P
(

max
1≤i≤n2

|ZΦ(i)| >
nµ

2

)
= 1−

(
2φ(nµ/2)− 1

)n2

∼ 1−
(

2− 2√
2π

nµ

2
exp
(
−n

2µ

8

)
− 1

)n2

=

n2∑
k=1

(
n2

k

)
1

n2k

(
−n

µ+2

√
2π

exp
(
−n

2µ

8

))k
≤ nµ+2 exp

(
−n

2µ

8

) n2∑
k=1

(
n2

k

)
1

n2k

≤ e · nµ+2 exp
(
−n

2µ

8

)
≤ 1

2n2

for sufficiently large n. Furthermore

P
(

max
1≤i≤n2

|εΦ(i)| ≤
nµ

2

)
= P

(
|εΦ(i)| ≤

nµ

2
for all 1 ≤ i ≤ n2

)
= P

( |YΦ(i) − g(xΦ(i))|√
g(xΦ(i))

≤ nµ

2
for all 1 ≤ i ≤ n2

)
.

Since YΦ(i) ≥ 0 for all 1 ≤ i ≤ n2 we obtain for sufficiently large n

P
(

max
1≤i≤n2

|εΦ(i)| ≤
nµ

2

)
= P

(
0 ≤ YΦ(i) ≤ g(xΦ(i)) +

nµ

2

√
g(xΦ(i)) for all 1 ≤ i ≤ n2

)
.

For independent and identically distributed random variables ỸΦ(i) ∼Poisson(G∗) 1 ≤ i ≤ n2

we find

P
(

max
1≤i≤n2

|εΦ(i)| ≤
nµ

2

)
≥ P

(
0 ≤ ỸΦ(i) ≤ g(xΦ(i)) +

nµ

2

√
g(xΦ(i)) for all 1 ≤ i ≤ n2

)
≥ P

(
0 ≤ ỸΦ(i) ≤

nµ

2

√
g∗ for all 1 ≤ i ≤ n2

)
≥
(

1− P
(
ỸΦ(1) >

nµ

2

√
g∗
))n2

,

since P(Xλ1 ≤ k) ≤ P(Xλ2 ≤ k) for arbitrary numbers k if Xλj ∼ Poisson(λj), j = 1, 2 with
λ1 ≥ λ2. By Theorem 5.4 in ? we obtain the estimate

P
(
ỸΦ(1) ≥

nµ

2

√
g∗
)
≤ eG∗

(
2eG∗

nµ
√
g∗

)nµ

2

√
g∗

,

which yields

P
(

max
1≤i≤n2

|εΦ(i)| ≤
nµ

2

)
≥
(

1− eG∗
(

2eG∗

nµ
√
g∗

)nµ

2

√
g∗)n2

.

With the same arguments as those used in order to estimate the maximum of the independent,
normally distributed random variables we obtain the estimate

P
(

max
1≤i≤n2

|εΦ(i)| ≥
nµ

2

)
≤ n2eG

∗+1

(
2eG∗

nµ
√
g∗

)nµ

2

√
g∗

≤ 1

2n2
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for sufficiently large n. In relation (35) we now replace the term

P
(

max
1≤i≤n2

|εΦ(i) − ZΦ(i)| > nµ
)

by the estimate 1/n2, which gives

P
(∣∣S(n,n) −W (n, n)

∣∣ > CMnµ
)
≤ LM
nµ·M

+
1

n2
≤ C(g∗, G∗)‖g‖1a2

n

nµ·M−2
+

1

n2
,

where we used (34) to obtain the last estimate. This yields∣∣S(n,n) −W (n, n)
∣∣ = O(nµ) a.s.

Recall that our objective is to show that

sup
(i,j)∈{1,...,n}2

∣∣S(i,j) −W (i, j)
∣∣ = O(nµ) a.s.

To this end we apply a fluctuation inequality by ? that allows to compare the orders of
magnitude of the quantities sup(i,j)∈{1,...,n}2

∣∣S(i,j) −W (i, j)
∣∣ and |S(n, n) −W (n, n)| by an

inequality of the form

P
(

sup
(i,j)∈{1,...,n}2

∣∣S(i,j) −W (i, j)
∣∣ > C1µ

)
≤ C2P

(
|S(n, n)−W (n, n)| > C3n

µ
)
,

where the constants C1, C2 and C3 do not depend on n. Since

S(n,n) −W (n, n)√
Var(S(n,n) −W (n, n))

=

∑n2

i=1(εΦ(i) − ZΦ(i))√∑n2

i=1 Var(εΦ(i) − ZΦ(i))

D−→ N (0, 1) as n→∞,

it follows that Var(S(n,n)−W (n, n))/n2µ = O(1) for n→∞ and hence there exists a constant

C̃ > 0 such that for all n

C̃

√
Var(S(n,n) −W (n, n))

nµ
≤ 1

2
.

Finally, an application of Lemma 3.1 of ? yields

P
(

sup
1≤i≤n
1≤j≤n

∣∣Si,j −W (i, j)
∣∣ > 4

nµ

C̃

)
≤ 16

9
P
(∣∣Sn,n −W (n, n)

∣∣ > CM
nµ

C̃

)

≤ 16

9

( C̃C(g∗, G∗)‖g‖1a2
n

nµ·M−2
+

1

n2

)
,

for large enough M > 3/µ. Since the latter estimation shows that the probability is summable
the assertion of the lemma now immediately follows by Borel-Cantelli and the zero-one law.

�
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Proof of Lemma 5

First, note that

sup
x∈[0,1]2

|Zn(x)| D= sup
x∈ 1

h
[0,1]2
|Z̃(x)|,

where

Z̃(x) :=

∫
K(x− y) dW (y)

and that the covariance function r of the stationary Gaussian field Z̃ is given by

r(t) = Cov
(
Z̃(x), Z̃(x + t)

)
=

∫
K(y)K(y + t) dy.

Hence, the function r is square-integrable if FK is bounded:∫
|r(t)|2 dt = 4π2

∫
|FK(ξξξ)|4 dξξξ ≤ 4π2(K∗)2

∫
|FK(ξξξ)|2 dξξξ <∞.

The function r is integrable if K ∈ L1(R2)∫
|r(t)| dt ≤ ‖K‖21 <∞.

By assumption, the function r is three times differentiable in the mean-squared sense and
thus an application of Theorem 14.2 of ? yields the result of this lemma under either of the
assumptions on the kernel K.

�

Proof of Lemma 6

Note that we can express g̃n as

g̃n(y1, y2) =
1

n2a2
nh

2

n∑
i,j=−n

Yi,jη
(y1 − xi

h
,
y2 − xj
h

)
,

that is, g̃n is a kernel-type estimator for the function g with kernel η. Define Mn := log(n)
and εi,j := Yi,j − E[Yi,j ]. Then we can write

εi,j =
(
εi,jI{|εi,j | < Mn} − E[εi,jI{|εi,j | < Mn}]

)
+
(
εi,jI{|εi,j | ≥Mn} − E[εi,jI{|εi,j | ≥Mn}]

)
:= τi,j + ρi,j ,

where τi,j and ρi,j are defined in a obvious manner. We now first show that

P
(

1

n2a2
nh

2
sup
y∈R2

n∑
i,j=1

|ρi,j |
∣∣∣η(y − xi,j

h

)∣∣ > 1

n

)
= O

( 1

n2

)
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and subsequently that

P
(

1

n2a2
nh

2
sup
y∈R2

n∑
i,j=1

|τi,j |
∣∣∣η(y − xi,j

h

)∣∣ > log(n)

na2
nh

2

)
= O

( 1

n2

)
.

Recall that ‖Fη‖1 ≤ 4, which implies by the Hausdorff-Young inequality that ‖η‖∞ ≤
1/(2π)‖Fη‖1 ≤ 4/(2π) ≤ 1. Hence, by an application of Markov’s inequality, we find that

P
(

1

n2a2
nh

2
sup
y∈R2

n∑
i,j=1

|ρi,j |
∣∣∣η(y − xi,j

h

)∣∣ > 1

n

)
≤ 1

na2
nh

2

n∑
i,j=−n

E[|ρi,j |]

≤ 2

na2
nh

2

n∑
i,j=−n

E
[
|εi,j |I{|εi,j | ≥Mn}

]
.

Next, the Cauchy-Schwarz inequality yields the estimate

E
[
|εi,j |I{|εi,j | ≥Mn}

]
≤
(
E
[
|εi,j |2

]) 1
2
(
E
[
I{|εi,j | ≥Mn}

]) 1
2 ≤
√
G∗
(
P
(
|εi,j | ≥Mn

)) 1
2 .

Further, since g is bounded and Mn →∞ as n→∞, we obtain for sufficiently large n

P
(
|εi,j | ≥Mn

)
= P

(
εi,j ≥Mn

)
= P

(
Yi,j ≥Mn + g(xi,j)

)
≤ P

(
Yi,j ≥Mn + g∗

)
.

By Theorem 5.4 of ? we obtain the estimate

P
(
Yi,j ≥Mn + g∗

)
≤

exp(−g(xi,j))
(
eg(xi,j)

)g∗+Mn(
Mn + g∗

)Mn+g∗
≤
( G∗

Mn + g∗

)g∗( eG∗

Mn + g∗

)Mn

≤
( G∗
Mn

)g∗(eG∗
Mn

)Mn

≤
( G∗
Mn

)g∗ 1

n10

for sufficiently large n. This yields

P
(

1

n2a2
nh

2
sup
y∈R2

n∑
i,j=1

|ρi,j |
∣∣∣η(y − xi,j

h

)∣∣ > 1

n

)
≤ 2(2n+ 1)2

√
G∗

na2
nh

2

( G∗
Mn

)g∗/2 1

n5
= o
( 1

n2

)
.

Next, we consider

ǧn(y) :=
log(n)

n2a2
nh

2

n∑
i,j=1

τ̌i,jη
(y − xi,j

h

)
,

where τ̌i,j := τi,j/ log(n). The random variables τ̌i,j are independent, centered and bounded
but not identically distributed. By Theorem 1 of ? there exists a universal constant C ∈
(0,∞) and independent and identically distributed random variables (τ̃i,j , x̃i,j) such that

P
(

sup
y∈R2

|ǧn(y)| > λ
)
≤ C P

(
sup
y∈R2

|g̃n(y)| > λ

C

)
, (36)

where

g̃n(y) :=
log(n)

n2a2
nh

2

n∑
i,j=1

τ̃i,jη
(y − x̃ij

h

)
.
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Note that now the design-points x̃ij are random. Define the class of functions

G :=
{
f : R3 → R | f(z1, z2, z3) = z1 · I{|z1| ≤ 1} · η

(y − (z2, z3)T

h

)
, h ∈ R+, y ∈ R2

}
.

By Assumption 4 and Lemma 22 of ? the classes

G1 :=
{
f : R3 → R | f(z1, z2, z3) = z1 · I{|z1| ≤ 1}

}
and

G2 :=
{
f : R3 → R | f(z1, z2, z3) = η

(y − (z2, z3)T

h

)
, h ∈ R+, y ∈ R2

}
are VC-classes of functions. Since G = {f1 · f2 | f1 ∈ G1 and f2 ∈ G2}, by Lemma 2.14 of ?
also G is a VC-class of functions. Furthermore, G is measurable and uniformly bounded and
we can apply Theorem 2.1 of ? to find an estimate for the probability

P
(

sup
y∈R2

|g̃n(y)| > λ

C

)
which also bounds the probability

P
(

sup
y∈R2

|ǧn(y)| > λ
)

by eq. (36). Let Φ : {1, . . . , (2n+ 1)2} → {−n, . . . , n}2 be a bijective map. By Theorem 3.1
of ? there exists a constant L depending only on the VC-characteristics of the set G, such
that

P
(

sup
y∈R2

|g̃n(y)| > log(n)

Cna2
nh

2

)
= P

(
sup
f∈G

∣∣∣(2n+1)2∑
i=1

f(τ̃Φ(i), x̃Φ(i))− E[f(τ̃Φ(i), x̃Φ(i))]
∣∣∣ > log(n)

Cna2
nh

2

)
≤ L exp

(
− n

LC
log
(

1 +
log(n)2

LCn(2G∗ +G∗/n+ log(n)/n)2

))
.

Thus, for sufficiently large n we obtain the estimate

P
(

sup
y∈R2

|g̃n(y)| > log(n)

Cna2
nh

2

)
≤ L exp

(
− 2 log(n)2

L2C2(2G∗ +G∗/n+ log(n)/n)2

)
≤ exp(−2 log(n)).

With (36) this implies

P
(

sup
y∈R2

|ǧn(y)| > log(n)

na2
nh

2

)
= O

( 1

n2

)
,

which yields

sup
y∈R2

|ǧn(y)| = O
( log(n)

na2
nh

2

)
= o
( 1√

log(n)

)
a.s.
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