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Abstract

In time series analysis, statistics based on collections of estimators computed from subsamples

play a crucial role in an increasing variety of important applications. Proving results about the joint

asymptotic distribution of such statistics is challenging since it typically involves a nontrivial verification

of technical conditions and tedious case-by-case asymptotic analysis. In this paper, we provide a novel

technique that allows to circumvent those problems in a general setting. Our approach consists of

two major steps: a probabilistic part which is mainly concerned with weak convergence of sequential

empirical processes, and an analytic part providing general ways to extend this weak convergence to

functionals of the sequential empirical process. Our theory provides a unified treatment of asymptotic

distributions for a large class of statistics, including recently proposed self-normalized statistics and

sub-sampling based p-values. In addition, we comment on the consistency of bootstrap procedures and

obtain general results on compact differentiability of certain mappings that seem to be of independent

interest.

Keywords and Phrases: Empirical processes, sub-sampling, self-normalization, change point, weak con-

vergence, Time series, compact differentiability
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1 Introduction and Motivation

In time series analysis, a large class of statistics can be expressed as smooth functions of estimators

computed on consecutive portions (i.e., subsamples) of data. Since time series observations are naturally

ordered by time, the use of such statistics has been a common theme in time series inference and examples
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are abundant in areas such as sequential monitoring [Chu and White (1995), Aue and Reimherr (2009)],

retrospective change point detection [Csörgö and Horváth (1997), Perron (2006)] and subsampling-based

inference [Politis and Romano (1994), Politis et al. (1999)], among others. More recent examples include

the self-normalized (SN, hereafter) statistics [Shao (2010a)], a new SN-based test statistic for change

point detection [Shao and Zhang (2010)] and the p-value of the subsampling-based inference under the

fixed-b asymptotics [Shao and Politis (2013)]. To obtain the asymptotic distributions of statistics of such

kind, a traditional approach is to express the estimator as a sum of three parts, including the parameter,

an average of influence functions, and a remainder term, followed by certain assumptions that ensure

asymptotic negligibility of remainder terms and a routine analysis of the leading term which is of linear

form. For many statistics of practical interest, theoretical analysis based on this approach can be quite

challenging and tedious. In particular verifying the negligibility of remainder terms can be technically

involved, since it requires a careful case-by-case study. The situation is further complicated by the fact

that in time series settings, the underlying data are dependent. The aim of the present paper is to

provide a general approach which allows to easily obtain the asymptotic distribution of statistics based

upon infinite collections subsample estimates without long and tedious arguments.

In statistical applications, many important statistics can be expressed as smooth [more precisely: com-

pactly differentiable] functionals of simple quantities such as the empirical distribution function. The

analysis of the asymptotic properties of such statistics in the non-sequential setting can be elegantly

performed in two distinct steps: an analytic part which consists in establishing the smoothness of the

functional and a probabilistic part that is concerned with the analysis of the underlying quantity. One of

the many appealing features of such an approach lies in the fact that the analytic properties need to be

established only once. Moreover, quantities such as the empirical distribution function are often rather

well analyzed for a wide range of data types. This approach has been successfully applied to the analysis

of quantiles [Doss and Gill (1992)], survival data [Gill and Johansen (1990)], copulas and scalar measures

of dependence [Fermanian et al. (2004); Bücher and Volgushev (2011)] and to the setting of dependent

data.

A slightly more formal description of the situation above is as follows. Assume that we have a collection of

estimators, say (x̂n,κ)κ∈K of a quantity x. A classical example of such a collection is given by estimators

computed from various fractions of the sample X1, ...,Xn. For illustration purposes, assume that x is

the distribution function, x̂n,κ denotes the empirical distribution function computed from X1, ...,X⌊nκ⌋+1

and K = [0, 1]. Also, assume that the parameter of interest, say θ, can be expressed as φ(x) where φ

denotes some functional. For example, it is possible to express the copula as a functional of the cumulative

distribution function. If the map φ is compactly differentiable, the asymptotic distribution of a suitably

normalized version of φ(x̂n,κ) for fixed κ can be derived from a corresponding result for x̂n,κ. More

precisely, denoting by αn a sequence diverging to infinity and by w(κ) a weight function, weak convergence

of αnw(κ)(x̂n,κ−x) in a suitable function space implies weak convergence of αnw(κ)(φ(x̂n,κ)−φ(x)) for a

finite collection of fixed values of κ. However, in many important applications the joint weak convergence

of the whole collection Vn :=
(

αnw(κ)(φ(x̂n,κ)− φ(x)
)

κ∈K
in a suitable functional sense is required. For

the purpose of illustration, consider the following simple example.
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Example 1.1. For the sake of concreteness, assume that we observe data, say (Yi = Ti ∧ Ci, δi =

I{Yi = Ti})i=1,...,n from a censored time series [here, Ti denote survival times, Ci censoring times and

δi denote censoring indicators] and want to test if there is a change in the location parameter of the

marginal distribution Fi of Ti. A general way to quantify the location of censored observations, that

is well-defined even under heavy censoring, is provided by the median. Typical test statistics for the

null hypothesis of a constant median are based on comparing the medians of the Kaplan-Meier esti-

mators which are computed from portions of the data. For simplicity, assume that the estimator m̂κ

with κ ∈ [0, 1] is based on the data (Yi, δi)i=1,...,⌊nκ⌋∨1. A simple test statistic for the null hypoth-

esis of a constant median is given by supκ∈[0,1]w(κ)|m̂κ − m̂1| with w denoting a suitable weighting

function. In order to derive the null distribution of our test statistic, we would typically establish a

process convergence result for
√
nw(κ)(m̂κ − m̂1) viewed as element in the space D[0, 1] and apply the

continuous mapping theorem. Classical results on compact differentiability [see Example 2.2 and 2.3]

imply that the median of the Kaplan-Meier estimator can be represented as a compactly differentiable

functional of the two empirical (sub-)distribution functions Ĥ0,⌊nκ⌋(y) := ⌊nκ⌋−1
∑⌊nκ⌋

i=1 δiI{Yi ≤ y} and

F̂Y,⌊nκ⌋(y) := ⌊nκ⌋−1
∑⌊nκ⌋

i=1 I{Yi ≤ y}. If we want to apply the classical delta-method to derive the pro-

cess asymptotics of
√
nw(κ)(m̂κ−m̂1) we are faced with two problems: first, we need process convergence

of suitably normalized versions of Ĥ0,⌊nκ⌋(y)−E[H0,⌊nκ⌋(y)] and F̂Y,⌊nκ⌋(y)−E[FY,⌊nκ⌋(y)]. Second, as we

shall argue below, the classical delta method does not provide results on weak convergence of the quantity
√
nw(κ)(m̂κ − m̂1) as a process indexed in κ.

Returning to a more general setting, we can say that the classical delta method and a large collection

of results on the behavior of general empirical processes allow to establish weak convergence results for

a wide class of statistics as long as we consider a fixed, finite collection of values κ. Informally, we call

this the ’non-sequential’ case. However, the tools available to date do not allow the same conclusion

when we are interested in collections of sub-samples, or, stated informally, in the ’sequential’ case. The

fundamental aim of the present article is thus to provide general ways of importing the tools mentioned

above from the ’non-sequential’ into the ’sequential’ setting.

For example, let us consider what we would need to apply a delta method in the ’sequential’ case if

only compact differentiability of the map φ in the ’non-sequential’ case is available. Essentially, such an

approach would require us to show compact differentiability of the map

Φ : (hκ)κ∈K 7→
(

w(κ)φ
( hκ
w(κ)

))

κ∈K

viewed as a map between suitable metric spaces since we can write

Vn = αn

(

Φ
(

(w(κ)x̂n,κ)κ∈K

)

− Φ
(

(w(κ)x̂n,κ)κ∈K

))

.

Given the fact that a large amount of important maps φ that are known to be compactly differentiable,

we would like to make use of this information in the sequential setting. A natural question to ask thus is:

given compact differentiability of φ, what can we say about compact differentiability of Φ? As we shall

see in Section 2.1, such an implication does not hold in full generality, see in particular Example 2.5 and
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the discussion preceding it. At the same time, we obtain a positive result if we additionally assume that

the map φ possesses certain boundedness properties. Additionally, even when compact differentiability

of Φ fails, there still are many relevant settings where additional arguments can be applied to obtain

the desired weak convergence of Vn. In fact, in Section 2.1 we show that, given weak convergence of

Yn :=
(

αnw(κ)(x̂n,κ − x)
)

κ∈K
, we can derive properties of Vn in a very general setup. Additionally,

some general results on compact differentiability that seem to be of independent interest can be found in

Section 2.3.

Another fundamental question that needs to be taken care of before we can apply the functional delta

method is the weak convergence of the process Yn. In fact, results on weak convergence of Yn in settings

where the data X1, ...,Xn are allowed to be dependent are limited. A summary of available results as well

as new insights providing considerable extensions of those findings are collected in Section 2.2.

Finally, in Section 3, we illustrate how the general results presented in Section 2 can be applied to

obtain new insights regarding the properties of recently proposed methods including self-normalization

and generalizations thereof [Section 3.1], fixed-b corrections for sub-sampling methods [Section 3.2], and

SN-based testing procedures for change-points [Section 3.3]. Some comments on the applicability of our

results to bootstrap methods are also provided.

2 General results

We begin by introducing some relevant notation. For arbitrary sets F1, ...,FJ ,K define the vector space

L∞(F1, ...,FJ ;K) :=
{

(H1,t, ...,HJ,t)t∈K

∣

∣

∣
Hj,t ∈ ℓ∞(Fj)∀j, t sup

t
sup
j

sup
f∈Fj

|Hj,t(f)| < ∞
}

with norm

‖(H1,t, ...,HJ,t)t∈K‖L := sup
t

sup
j

sup
f∈Fj

|Hj,t(f)|.

Note that L∞(F1, ...,FJ ;K) can be identified with ℓ∞(K × F1) × ... × ℓ∞(K × FJ ) by considering the

relation

(H1,t, ...,HJ,t)t∈K ∈ L∞(F1, ...,FJ ;K) ↔
(

(t, f) 7→ H1,t(f), ..., (t, f) 7→ HJ,t(f)
)

.

By the definition of L∞(F1, ...,FJ ;K), we have supt supf |Hj,t(f)| < ∞ for all j = 1, ..., J so that the maps

(tj , fj) 7→ Hj,tj(fj) are indeed bounded and thus elements of ℓ∞(K × Fj). In particular, if the product

space ℓ∞(K×F1)×...×ℓ∞(K×FJ ) is equipped with the maximum norm ‖(x1, ..., xJ )‖max := maxj ‖xj‖∞
induced by the supremum norms on its components, the identification given above is an isometry, that is

‖(H1,t, ...,HJ,t)t∈K‖L =
∥

∥

∥

(

(t, f) 7→ H1,t(f), ..., (t, f) 7→ HJ,t(f)
)∥

∥

∥

max
.

Weak convergence in L∞(F1, ...,FJ ;K) is henceforth understood as weak convergence in the Hoffmann-

Jørgensen sense in the space L∞(F1, ...,FJ ;K) as a subspace of ℓ∞(K × F1) × ... × ℓ∞(K × FJ) [see

Van der Vaart and Wellner (1996), Chapters 1.4 and 1.5 for more details].
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Remark 2.1. In most situations, the sets F1, ...,FJ can be viewed as subsets of Rd. For example, the

empirical distribution function (n−1
∑

I{Xi ≤ y})y∈Rd of a sample of d-dimensional random variables

X1, ...,Xn is naturally indexed by the set Rd. Another approach that fits nicely into the empirical process

setting and will play a central role in Section 2.2, is to consider classes of functions {x 7→ f(x)|f ∈ Fj}.
In this setting, the empirical process can be elegantly written as

(

n−1
∑n

i=1 f(Xi) − Ef(Xi)
)

f∈Fj

, see

Van der Vaart and Wellner (1996) for examples. For example, the empirical distribution function can

also be viewed as element of ℓ∞(F) with F denoting the collection of indicators of rectangles, that is

F = {x 7→ I{x ≤ y}|y ∈ R
d}. By identifying the function x 7→ I{x ≤ y} with the point y ∈ R

d we obtain

a way to index F by R
d and vice versa. In most of the following theoretical developments, the form of Fj

will be arbitrary unless explicitly specified otherwise.

As discussed previously, the asymptotic analysis of statistics based on the process Vn can be performed

by considering two distinct questions: the stochastic properties of Yn and the analytic properties of the

map φ. Both questions will be addressed in this section in a general setting. In section 2.1, we present

our analytic considerations. An overview of existing results regarding the stochastic part as well as their

extension will be considered in section 2.2. Finally, some general results on compact differentiability that

seem to be of independent interest are provided in section 2.3.

2.1 Analytic considerations

This section is primarily concerned with the following questions: given a collection of estimators (ŷn,s,t)(s,t)∈K

such that for fixed (s, t) ∈ K each ŷn,s,t is an element of ℓ∞(F1)× ... × ℓ∞(FJ) with K ⊂ ∆ := {(s, t) ∈
[0, 1]2|s ≤ t}, a smooth (in a suitable sense) map φ : ℓ∞(F1)× ...× ℓ∞(FJ ) → ℓ∞(G1)× ...× ℓ∞(GL), and

weak convergence of the process [αn denotes some deterministic sequence diverging to infinity]

Yn(s, t, f1, ..., fJ ) := (t− s)αn(ŷn,s,t(f1, ..., fJ )− x(f1, ..., fJ ))

viewed as element of L∞(F1, ...,FJ ;K), what can we say about weak convergence of Vn where

Vn(s, t, g1, ..., gL) := (t− s)αn(φ(ŷn,s,t)(g1, ..., gL)− φ(x)(g1, ..., gL))

as element of L∞(G1, ...,GL;K)? And what can we say about bootstrap validity for Vn given a valid

bootstrap procedure for Yn?

For instance, consider the situation where we have a sample X1, ...,Xn. Assume that the quantity x can

be represented as x =
(

(E[f(X)])f∈F1 , ...., (E[f(X)])f∈FJ

)

for some classes of functions F1, ...,FJ , see the

examples below. A prime example for the quantity ŷn,s,t is given by the estimator computed from the

sub-sample X⌊ns⌋+1, ...,X⌊nt⌋, that is

ŷn,s,t :=
(( 1

⌊nt⌋ − ⌊ns⌋

⌊nt⌋
∑

i=⌊ns⌋+1

f(Xi)
)

f∈F1

, ...,
( 1

⌊nt⌋ − ⌊ns⌋

⌊nt⌋
∑

i=⌊ns⌋+1

f(Xi)
)

f∈FJ

)

(1)
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where the empty sum is defined as zero and we set ′0/0 = 0′ to take care of the case ⌊ns⌋ = ⌊nt⌋.

Regarding the smoothness of φ, we impose the following condition

(C) The map

φ : ℓ∞(F1)× ...× ℓ∞(FJ ) ⊃ Dφ → Rφ ⊂ ℓ∞(G1)× ...× ℓ∞(GL).

is compactly differentiable at x tangentially to V ⊂ ℓ∞(F1)× ... × ℓ∞(FJ ). Additionally, 0 ∈ V as

well as f ∈ V ⇒ cf ∈ V for all c > 0.

In the ’classical’ setting, compact differentiability is known to provide a good balance between strength

of the differentiability concept that is needed for establishing a general functional delta method and the

number of statistically relevant functionals that can actually be shown to be compactly differentiable.

See Van der Vaart and Wellner (1996), Chapter 3.9 for a more detailed discussion of this topic. Two

particular examples are discussed below. Of course, there exists a vast collection of further examples

[copulas, dependence measures, M- and L-estimators to name just a few] that are equally important but

not discussed here because of space considerations. For a more detailed list we refer the interested reader

to Chapter 3.9 in Van der Vaart and Wellner (1996) and the recent paper by Gao and Zhao (2011).

Example 2.2. Empirical quantiles

Consider the class of functions F : {y 7→ I{y ≤ t}|t ∈ R}. In this case, ŷn,s,t is simply the empirical

distribution function of the sub-sampleX⌊ns⌋+1, ...,X⌊nt⌋. Consider the quantile map φ : F 7→ (F−1(τ))τ∈S

for some S ⊂ (0, 1) which now corresponds to G1. Applying this map to ŷn,s,t yields collections of empirical

quantiles of the sub-samples X⌊ns⌋+1, ...,X⌊nt⌋. Compact differentiability of the quantile map can be

established under appropriate conditions, see Lemma 3.9.23 in Van der Vaart and Wellner (1996).

Example 2.3. Kaplan-Meier estimator

Assume that we have right-censored observations of the form (Yi, δi)i=1,...,n. It is a well-known fact that

the Kaplan-Meier estimator F̂KM [Kaplan and Meier (1958)], viewed as a map into the set of distribution

functions on [0, V ] for a suitable V < ∞, is a compactly differentiable functional of the two functions

F̂1(t) :=
1

n

∑

i

δiI{Yi ≤ t}, F̂Y (t) :=
1

n

∑

i

I{Yi ≤ t},

see Chapter 3.9 in Van der Vaart and Wellner (1996). This suggests to consider the classes of functions

F1 :=
{

(y, δ) 7→ δI{y ≤ t}
∣

∣

∣t ∈ R

}

, F2 :=
{

(y, δ) 7→ I{y ≤ t}
∣

∣

∣t ∈ R

}

.

Combining this with the quantile mapping [see Example 2.2] easily allows to consider quantiles of the

Kaplan-Meier estimator.

Regarding the process Yn, we need the following assumption,

(W) Assume that

Yn  Y in L∞(F1, ...,FJ ;∆)

6



where

Y(s, t, f1, ..., fJ ) := (Y1(s, t, f1), ...,YJ (s, t, fJ))

and Yj, j = 1, ..., J are centered, Borel measurable processes.

Remark 2.4. A detailed discussion of condition (W) for estimators ŷn,s,t of the form (1) is provided in

the next section. However, there are interesting examples that go beyond the framework described above.

For example, the classical empirical copula process [see Rüschendorf (1976)] is of the form

C
◦
n(s, u) =

1√
n

⌊sn⌋
∑

i=1

(

I{Xi ≤ F−
n (u)} − C(u)

)

where F−
n (u) := (F−

n1(u1), ..., F
−
nd(ud)) denotes the vector of the generalized inverses of the marginal

empirical distribution functions Fnj(y) = n−1
∑

i I{Xij ≤ y} and C is the copula of the distribution of X.

Note that F−
n (u) depends on all the data regardless of the value of s. The process C◦

n(s, u) can be coerced

into the general framework of this section by considering the collection of estimators 1
⌊ns⌋

∑⌊ns⌋
i=1 I{Xi ≤

F−
n (u)} indexed by F1 := [0, 1]d. Weak convergence of the process C

◦
n under weak assumptions on the

copula with possibly dependent data was recently established by Bücher and Volgushev (2011).

The limit Y in assumption (W) needs to satisfy certain technical conditions that are not very restrictive

as we shall demonstrate later.

(A1) Assume that sup|s−s′|+|t−t′|≤δ supj supfj∈Fj
|Yj(s, t, fj)−Yj(s

′, t′, fj)| = oP (1) as δ → 0.

(A2) Define the set

UK :=
{

(hs,t)(s,t)∈K : hs,t ∈ V ∀ (s, t) ∈ K, sup
(s,t)∈K

‖hs,t‖ < ∞
}

.

Assume that the sample paths of Y are in UK with probability one.

Condition (A2) is non-restrictive in the sense that it is needed to apply the functional delta method

to Vn(s, t, ·) for each fixed (s, t). Assumption (A1) is needed for the application of the general compact

differentiability result in Section 2.3. As we shall discuss in the next section [see Remark 2.13], assumption

(A1) is typically satisfied in a wide variety of practically relevant settings. Assumptions (W), (A1), (A2)

are already sufficient to derive weak convergence of Vn if the set K satisfies inf(s,t)∈K |t− s| > 0. Without

this condition, (W), (A1), (A2) are not sufficient as the following example demonstrates.

Example 2.5. Consider the map φ that takes a distribution function to its median and let K =

{0} × [0, 1] ⊂ ∆. Define F1 := {x 7→ I{x ≤ y}|y ∈ R} and identify the functions x 7→ I{x ≤ y} ∈ F1 with

y ∈ R. Assume that ŷn,0,t(y) =
1

⌊nt⌋

∑⌊nt⌋
i=1 I{Xi ≤ y}. Consider a triangular scheme of data that is of the

form Xjn = n for 1 ≤ j < n1/3 and Xjn ∼ U [0, 1] i.i.d. for n1/3 ≤ j ≤ n. Elementary calculations show

that Yn(0, ·, ·) converges weakly to the Kiefer-Müller process K with covariance Cov(K(t, y),K(t′, y′)) =

min(t, t′)(min(y, y′)− yy′). On the other hand, setting t = n−3/4 we have almost surely

7



Vn((0, n
−3/4)) = n1/2t(φ(ŷn,0,t)− φ(x)) = n−1/4(n− 1/2) → ∞,

and thus weak convergence of Vn can not hold.

The underlying problem in the above example is that due to the weighting with t− s, weak convergence

of αn(t − s)(ŷn,t,s − x) is not informative about ŷn,t,s for values of t − s that can be arbitrarily close to

zero. Additional assumptions are needed to exclude this kind of behavior presented in the above example.

It turns out that for this purpose the following condition is sufficient. As we shall discuss later, there are

many situations where it is easily satisfied.

(A3) For any kn → 0 we have sup(s,t)∈K,|t−s|≤kn(t−s)‖φ(ŷn,s,t)‖ = o∗P (1) where the asterisk denotes outer

probability.

Remark 2.6. Note that condition (A3) is automatically satisfied if sup(s,t)∈K ‖φ(ŷn,s,t)‖ = O∗
P (1). This

is trivially true for uniformly bounded maps φ, which includes many interesting examples such as copulas,

dependence measures or the Kaplan-Meier estimator (which per definition is a distribution function).

Moreover for specific sets K, further conditions implying (A3) can be derived. See Remark 2.15 in

Section 2.2 for further details.

Now we are ready to state the first main result of this section.

Theorem 2.7. For any compact K ⊂ ∆, with inf(s,t)∈K |t − s| ≥ a > 0 conditions (C), (W), (A1) and

(A2) imply Vn  V in L∞(G1, ...,GL;K) where

V((s, t), g1, ..., gL) :=
(

φ′
xY(s, t, ·)

)

(g1, ..., gL).

If additionally (A3) holds, the assumption inf(s,t)∈K |t− s| ≥ a > 0 can be dropped.

Remark 2.8. Although assumption (A3) often holds, there are situations where verifying it can be very

tedious or requires additional assumptions on the underlying data structure. For example, consider the

setting where K = ∆ and φ denotes the map that takes a distribution function to its median. In that

case, assumption (A3) would require that 1
n maxi=1,...,n |Xi| = oP (1) since the median of one observation

is the observation itself. Effectively, this places moment assumptions on X that are not needed for the

median from large samples to be well-behaved. A closer look at the proofs reveals that for any γ ∈ (0, 1)

the following modified version of the process Vn

Ṽn :=
(

(t− s)I{t− s ≥ α−γ
n }αn(φ(ŷn,s,t)− φ(x))

)

(s,t)∈K

converges to the same limit V without assumption (A3) or the condition inf(s,t)∈K |t− s| ≥ a > 0. In the

applications discussed in Section 3, the modification above essentially amounts to not using information

from extremely small sub-samples. As the discussion above indicates, for certain sets K this can be viewed

as a robustification.

8



Remark 2.9. A closer look at the proof of the above result shows that the special structure of ∆ does

not play a crucial role. In fact, the same approach yields a more general result. Let (K, dK) denote a

general compact metric space. Assume that

Yn(κ, f1, ..., fJ ) = w(κ)αn

(

ŷn,κ(f1, ..., fJ )− x(f1, ..., fJ )
)

and that Yn  Y ∈ L(F1, ...,FJ ;K) with a centered process Y with w(·) denoting a bounded weight

function. If additionally supdK(κ,κ′)≤δ supj supfj∈Fj
|Yj(κ, fj)−Yj(κ

′, fj)| = oP (1) and if the sample paths

of Y, are, with probability one in the set

ŨK :=
{

(hκ)κ∈K : hκ ∈ V ∀ κ ∈ K, sup
κ∈K

‖hκ‖ < ∞
}

it follows that with γ ∈ (0, 1) arbitrary

(

w(κ)I{w(κ) ≥ α−γ
n }αn(φ(ŷn,κ)− φ(x))

)

κ∈K
 

(

φ′
xY(κ, ·)

)

κ∈K
in L∞(G1, ...,GL;K)

as long as infκ∈K |w(κ)| > 0. If additionally a modified version of condition (A3) holds, i.e. if for any

kn → 0 we have supκ∈K,|w(κ)|≤kn w(κ)‖φ(ŷn,κ)‖ = o∗P (1), the weak convergence above holds without the

assumption infκ∈K |w(κ)| > 0.

Next, we discuss bootstrap procedures. In particular, consider the following bootstrap version of the

quantity ŷn,s,t defined in (1)

ŷbn,s,t(s, t, f1, ..., fJ ) :=
( 1

⌊nt⌋ − ⌊ns⌋

⌊nt⌋
∑

i=⌊ns⌋+1

Mif(Xi), ...,
1

⌊nt⌋ − ⌊ns⌋

⌊nt⌋
∑

i=⌊ns⌋+1

Mif(Xi)
)

. (2)

with M1, ...,Mn denoting random variables independent of the original sample X1, ...,Xn. The corre-

sponding bootstrap version of the process Gn is given by

Y
b
n := (t− s)αn(ŷ

b
n,s,t − ŷn,s,t) =: (Yb

n,1, ...,Y
b
n,J ) (3)

Under suitable assumptions on the data and random variables M1, ...,Mn a conditional version of assump-

tion (W) holds. Specifically, assume that

(WB) Y
b
n weakly converges to Y conditionally on the data in probability, or

(

Y
b
n,1, ...,Y

b
n,J

)

P
 

M

(

Y1, ...,YJ

)

in L∞(F1, ...,FJ ;K).

Here, weak convergence conditional on the data in probability (
P
 

M
-convergence) is understood in the

Hoffmann-Jørgensen sense as defined in Kosorok (2008), that is Yb
n

P
 

M
Y if and only if

(i) supf∈BL1

∣

∣EMf(Yb
n)− Ef(Y)

∣

∣→ 0 in outer probability,

(ii) EMf(Yb
n)

∗ − EMf(Yb
n)∗

P→ 0 for all f ∈ BL1,
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where BL1 denotes the set of all Lipschitz-continuous functions f : L∞(F1, ...,FJ ;K) → R that are uni-

formly bounded by 1 and have Lipschitz constants bounded by 1, and where the asterisks in (ii) denote

measurable majorants (and minorants, respectively) with respect to the joint data (X1, . . . ,Xn,M1, . . . ,Mn).

Also, note that the map (M1, ...,Mn) 7→ Y
b
n is measurable conditionally on the original data X1, ...,Xn

outer almost surely [for fixed X1, ...,Xn, this mapping is Lipschitz-continuous] and thus we do not need

to consider measurable majorants. Settings where results of this kind hold are discussed in the next section.

The classical delta method for the bootstrap [see e.g. Theorem 12.1 in Kosorok (2008)] asserts that

for a map φ that is compactly differentiable at x with derivative φ′
x and additionally satisfies suitable

measurability conditions, we have

αn(t− s)(φ(ŷbn,s,t)− φ(ŷn,s,t))
P
 

M
φ′
xG in ℓ∞(G1)× ...× ℓ∞(GL)

for every fixed (s, t). The next Theorem provides a generalization of this finding. More precisely, it

states conditions that allow for a generalization of Theorem 2.7 to conditional weak convergence in

L∞(G1, ...,GL;K).

Theorem 2.10. With the notation above, assume that (WB), (A1), (A2) and (C) hold. Then for any

compact K ⊂ ∆ with inf(s,t)∈K |t− s| > 0 we have

V
b
n := αn(t− s)(φ(ŷbn,s,t)− φ(ŷn,s,t))

P
 

M
φ′
xY = V in L∞(G1, ...,GL;K).

If additionally (A3) holds and sup(s,t)∈K,|t−s|≤kn(t − s)‖φ(ŷbn,s,t)‖ = o∗P (1), the convergence holds for

arbitrary compact K ⊂ ∆.

Remark 2.11. Suitable modifications of the extensions discussed in Remark 2.8 and Remark 2.9 continue

to hold in the bootstrap setting. More precisely, we can replace sets K ⊂ ∆ by arbitrary compact sets

and the weighting t − s with arbitrary bounded weighting functions w, in which case the assumption

inf(s,t)∈K |t − s| > 0 needs to be replaced by infκ∈K |w(κ)| > 0. Also, conditional weak convergence of

Ṽ
b
n = (w(κ)I{|w(κ)}| > α−γ

n }αn(φ(ŷ
b
n,s,t)−φ(ŷn,s,t))κ∈K holds without assumption (A3) and the condition

sup(s,t)∈K,|t−s|≤kn(t− s)‖φ(ŷbn,s,t)‖ = o∗P (1) used in the above theorem.

2.2 Probabilistic considerations

In this section, we focus our attention on the setting where Yn has a specific structure that typically arises

in applications. More precisely, consider the multi-parameter sequential empirical process

Yn :=
(

(t− s)αn(ŷn,s,t − x)
)

(s,t)∈∆

where ∆ := {(s, t) ∈ [0, 1]2|s ≤ t} and the quantity

ŷn,s,t :=
(( 1

⌊nt⌋ − ⌊ns⌋

⌊nt⌋
∑

i=⌊ns⌋+1

f(Xi)
)

f∈F1

, ...,
( 1

⌊nt⌋ − ⌊ns⌋

⌊nt⌋
∑

i=⌊ns⌋+1

f(Xi)
)

f∈FJ

)
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denotes an estimator for x that is computed based on the sub-sample X⌊ns⌋+1, ...,X⌊nt⌋. It turns out that

conditions (W), (A1), (A2) in the previous section can be derived from simpler conditions that involve

only a collection of ’classical’ one-parameter sequential processes

Gn(t, f1, ..., fJ ) := (Gn,1(t, f1), ...,Gn,J (t, fJ))

where Gn,j(t, f) := tαn(x̂
(j)
n,t(f)− x) and

x̂n,t :=
(( 1

⌊nt⌋

⌊nt⌋
∑

i=1

f(Xi)
)

f∈F1

, ...,
( 1

⌊nt⌋

⌊nt⌋
∑

i=1

f(Xi)
)

f∈FJ

)

=: (x̂
(1)
n,t, ..., x̂

(J)
n,t ).

Consider the assumptions

(W’) Assume that

Gn  G in L∞(F1, ...,FJ ; [0, 1])

where

G(t, f1, ..., fJ ) := (G1(t, f1), ...,GJ (t, fJ))

and Gj, j = 1, ..., J are centered, Borel measurable processes.

(A1’) Assume that sup|s−t|≤δ supj supfj∈Fj
|Gj(t, fj)−Gj(s, fj)| = o(1) as δ → 0.

The conditions above turn out to be sufficient for (W) and (A1).

Proposition 2.12. Under conditions (W’) and (A1’), we have

Yn  Y in L∞(F1, ...,FJ ;∆)

where ∆ = {s, t ∈ [0, 1] : s ≤ t} and

Y(s, t, f1, ..., fJ ) := G(t, f1, ..., fJ )−G(s, f1, ..., fJ ).

Moreover, Y satisfies assumption (A1).

Remark 2.13. For many kinds of weakly dependent data [including, of course, the independent case],

the process G is a vector of centered Gaussian processes with covariance of the form

Cov(G(s, f1, ..., fJ ),G(t, g1, ..., gJ )) = (s ∧ t)K(f1, ..., fJ , g1, ..., gJ )

for some uniformly bounded covariance kernel K. In this case, assumption (A1’) holds. To see this,

note that under (A1’) the process G has paths that are uniformly continuous with respect to the

metric ρ2((t, f1, ..., fJ ), (t
′, f ′

1, ..., f
′
J )) := E[(G(t, f1, ..., fJ ) − G(t′, f ′

1, ..., f
′
J ))

2], see Example 1.5.10 in

Van der Vaart and Wellner (1996). The discussion at the beginning of Example 1.5.10 in Van der Vaart and Wellner

(1996) thus yields the desired result. The special structure of Yn implies that its sample paths have the

same property.
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Remark 2.14. There are interesting cases where condition (A1’) holds for limiting processes that are

non-Gaussian. More precisely, defining F1 = [−∞,∞], the results in Dehling and Taqqu (1989) imply

weak convergence of the process Gn if the data Xi exhibit long-range dependence. The limiting process,

which can be non-Gaussian, is of the form G(t, y) = f(y)Zm(t) with f denoting a deterministic, uniformly

bounded function and Zm a so-called m’th order Hermite-process [see Dehling and Taqqu (1989) for a

definition]. In particular, the sample paths of this process are Hölder-continuous [see Maejima and Tudor

(2007)] and thus assumptions (A1’) and (W’) hold.

Remark 2.15. Consider the special case K = {0} × [0, 1]. In this case, assumption (A3) is satisfied

as soon as x̂n,t is of the form given in (1) with the data X1,X2, ... stemming from a strictly stationary

sequence and x̂n,1 → x outer almost surely. To see this, note that under the assumptions discussed above

we have supt ‖φ(x̂n,t)‖ = maxj=1,...,n ‖φ(x̂j,1)‖ and that by Lemma B.1 together with the continuous

mapping theorem ‖φ(x̂n,1)‖ → ‖φ(x)‖ outer almost surely. This in turn implies that (supn≥1 ‖φ(x̂n,1)‖)∗
[the asterisk denoting a measurable majorant] is bounded in probability. For results implying almost sure

convergence in a very general setting, see Adams and Nobel (2010) and the references cited therein.

For independent data, assumption (W’) is known to hold as soon as the classes of functions F1, ...,FJ

are Donsker [see Van der Vaart and Wellner (1996), Chapter 2.12.1]. For dependent data, much less is

known. Available results are, to the best of our knowledge, limited to classes of functions of of the form

F1 = {u 7→ I{u ≤ y}|y ∈ R
d} [the inequality is understood component-wise]. Here, results for d > 1

are derived by Sen (1974) and Rüschendorf (1974) under φ−mixing and by Yoshihara (1975) and Inoue

(2001) under strong mixing. Berkes et al. (2009) considered the case d = 1 under S-mixing, and derived

a stronger result than weak convergence of the process. Finally, the paper by Dehling and Taqqu (1989)

contains a similar result for the class of functions F1 = {u 7→ I{u ≤ y}|y ∈ R} and long-range dependent

data. To the best of our knowledge, nothing is known for general classes of functions.

Note that by Lemma 1.4.3 in Van der Vaart and Wellner (1996), asymptotic tightness of Gn is equivalent

to asymptotic tightness of Gn,j for all j = 1, ..., J . Thus, Problem 1.5.3 in the same reference implies that

in order to obtain weak convergence of Gn to G, we need to show that first Gn,j is asymptotically tight

for all j = 1, ..., J and second that the following condition holds

(F) For all finite collections si,j ∈ [0, 1], i = 1, ..., N, j = 1, ..., J , fij ∈ Fj , i = 1, ..., N, j = 1, ..., J the

collection (Gj,n(sij, fij))j=1,..,J,i=1,...,N converges weakly to (Gj(sij, fij))j=1,..,J,i=1,...,N in the usual

R
NJ -dimensional sense.

There is a vast literature containing results that imply the finite-dimensional convergence (F), see Dehling et al.

(2002) and the references cited therein for an overview. Criteria establishing asymptotic tightness of the

processes Gn,j for dependent data on the other hand are not as widely available, and one general result

along those lines is provided below. This result is of independent interest. In particular, it can be used

to verify condition (W’) in a number of settings that have not been considered before.

Theorem 2.16. Assume that the process Gn is of the form Gn = tαn(x̂n,t − x) where x̂n,t is defined in

(1) and the data X1,X2, ... come from a strictly stationary sequence. Assume that for each j = 1, ..., J

12



there exists a semi-metric ρj on Fj which makes Fj totally bounded, and for each j = 1, ..., J we have

supf∈Fj
E|f |q < ∞. Define Fj,δ := {f − g|f, g ∈ Fj , ρj(f, g) ≤ δ}. Assume that the process Gn,j(1, ·)

satisfies for some q > 2 and j = 1, ..., J

lim
δ↓0

lim sup
n→∞

E
∗‖Gn,j(1, ·)‖qFj,δ

= 0 (4)

[remember that the asterisk denotes outer expectation], that

max
j=1,...,J

sup
n∈N

E
∗‖Gn,j(1, f)‖q < ∞ ∀f ∈ F . (5)

and that for every j the class of functions Fj has envelope Fj which has finite q’th moment. Let condition

(F) hold. Then Gn  G in L∞(F1, ...,FJ ; [0, 1]).

Condition (4) has been established by Andrews and Pollard (1994) for strongly mixing data, and inequal-

ity (3.1) in Andrews and Pollard (1994) reveals that (5) holds under the same assumption. Moreover

Hagemann (2012) established (4) for stationary sequences with geometric moment contraction properties

[see Wu and Shao (2004)], and the results in his appendix show that again (5) holds under the same

assumptions.

Next, consider bootstrap procedures. In the case of independent data, a mild assumption on the mul-

tipliers Mi suffices. More precisely, assuming that Mi are i.i.d., independent of the data Xi, and that
∫
√

P (|M1| > u)du is finite [which follows if M1 has finite moment of order 2+ ε], the classes of functions

F1, ...,FJ being Donsker [see Van der Vaart and Wellner (1996), page 81 for a definition of this property]

implies (WB). To see this, note that by arguments similar to the ones given in the proof of Proposition

2.12 it suffices to derive (WB) for the set K = {0} × [0, 1]. To do so, apply Lemma B.3 in the appendix

where the approximating mappings Ai and Ab
i,n are defined through projections on piecewise constant

functions, see the arguments in the proof of Theorem 1.5.6 in Van der Vaart and Wellner (1996). Then

assumption (i) of Lemma B.3 corresponds to conditional finite-dimensional convergence which can be

established by arguments similar to those given in Lemma 2.9.5 in Van der Vaart and Wellner (1996).

Condition (ii) corresponds to tightness of the limit process Y. Condition (iii) follows from the uncondi-

tional asymptotic tightness of Yb
n, which can be established by combining Theorem 2.12.1 and 2.9.2 in

Van der Vaart and Wellner (1996).

Under dependence, much less is known about bootstrap validity for empirical processes, even in the

non-sequential setting. For an overview of available results, see Radulović (2009). In the sequential

setting, some results along those lines were recently considered by Bücher and Ruppert (2013) based

on arguments from . More precisely, those authors proposed to consider variables M1,n, ...,Mn,n from

a triangular scheme that satisfy certain conditions [see assumptions A1-A3 in their paper]. In partic-

ular, the results in Bücher and Ruppert (2013) imply (WB) for K = {0} × [0, 1] under strong mixing

conditions for the class of functions F = {u 7→ I{u ≤ w}|w ∈ R
d}. Moreover, using the techniques in

that paper, in particular the Ottaviani type inequality [Lemma 1 in Appendix B of the corresponding
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paper], it should be possible to derive (WB) for K = {0}× [0, 1] by combining arguments similar to those

in the proof of Theorem 2.12.1 in Van der Vaart and Wellner (1996) with the Ottaviani-type inequality

of Bücher and Ruppert (2013) and results on the validity of bootstrap procedures in the non-sequential

setting. For an overview of such results, see Radulović (2009) and the references cited therein.

2.3 A general result on (quasi) Hadamard differentiability

This section contains an abstract result on compact differentiability that seems to be of independent

interest. It plays a crucial role in the proofs of Theorems 2.7 and 2.10. The result in this section applies

to both classical Hadamard differentiability [also known as compact differentiability], and the more general

concept of quasi-Hadamard differentiability which was recently introduced by Beutner and Zähle (2010).

The main advantage of this more general approach is that it allows to apply a modified delta method

in settings where the classical delta method fails, the simplest example being the mean. In particular,

the distribution of U- and V-statistics and value-at-risk functionals can be derived in settings where the

classical delta method fails. See Beutner and Zähle (2010, 2012); Beutner et al. (2012) for further details.

For the reader’s convenience, we state the definition from Beutner and Zähle (2010).

Definition 2.17. (Beutner and Zähle (2010))Consider a metrized topological vector space (R, dR),

a vector space D with subsets Dφ,D0 ⊂ D,C0 ⊂ D0 and assume that (D0, dD) is a metrized topological

vector space. A map φ : Dφ → R is said to be quasi-Hadamard differentiable at x ∈ Dφ tangentially to

C0〈D0〉 with derivative φ′
x if for every tn ց 0 and sequence hn → h with hn ∈ D0∀n, h ∈ C0 such that

x+ tnhn ∈ Dφ∀n we have

dR(t
−1
n (φ(x+ tnhn)− φ(x)), φ′

xh) → 0

with φ′
x denoting a continuous, linear map C0 → R.

Consider the following general setting.

(S) Denote by (R, dR) a metrized topological vector space. Consider a second vector space D with

subsets Dφ,D0 ⊂ D,C0 ⊂ D0 and assume that (D0, dD) is a metrized topological vector space. Let

φ : Dφ → R be quasi Hadamard differentiable at x tangentially to C0〈D0〉 and denote the derivative

by φ′
x. Let (K, dK) be a compact metric space. Define the sets

D :=
{

(ht)t∈K

∣

∣

∣
ht ∈ D ∀t

}

R :=
{

(ht)t∈K

∣

∣

∣ht ∈ R ∀t, sup
s,t

dR(ht, hs) < ∞
}

DΦ :=
{

(ht)t∈K

∣

∣

∣
ht ∈ Dφ ∀t, sup

s,t
dR(φ(ht), φ(hs)) < ∞

}

RΦ :=
{

(ht)t∈K

∣

∣

∣ht ∈ D ∀t, sup
s,t

dR(ht, hs) < ∞
}

D0 :=
{

(ht)t∈K

∣

∣

∣
ht ∈ D0 ∀t, sup

s,t
dD(ht, hs) < ∞

}

C0 :=
{

(ht)t∈K

∣

∣

∣ht ∈ C0 ∀t, sup
s,t

dD(ht, hs) < ∞
}
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On the sets RΦ and D0, define the metrics

dR,Φ((ht)t∈K , (gt)t∈K) := sup
t

dR(ht, gt) and dD,Φ((ht)t∈K , (gt)t∈K) := sup
t

dD(ht, gt),

respectively. For elements (ht)t∈K , (gt)t∈K set (ht)t∈K + a(gt)t∈K := (ht + agt)t∈K and assume that

with this definition, (D0, dD,Φ) and (R, dR,Φ) are metrized topological vector spaces. Define the

map

Φ :

{

DΦ → RΦ

(ht)t∈K 7→ (φ(ht))t∈K .

Theorem 2.18. Under setup (S) the map Φ is pseudo-Hadamard differentiable at X := (x)t∈K tangen-

tially to U〈D0〉 where

U :=
{

(ht)t∈K : ht ∈ C0 ∀t ∈ K, sup
dK (s,t)≤δ

dD(hs, ht) = o(1) as δ → 0
}

and the derivative is given by

Φ′
X :

{

C0 → R

(ht)t∈K 7→ (φ′
xht)t∈K .

Since quasi-Hadamard differentiability also implies classical Hadamard differentiability, the above result

continues to hold in the classical setting.

As an illustration of the above result, let us consider the specific setting of Remark 2.9 in Section 2.1

where (R, dR) = (ℓ∞(G1)× ...×ℓ∞(GL), ‖·‖max), D = ℓ∞(F1)× ...×ℓ∞(FJ ), dD((f1, ..., fJ ), (f
′
1, ..., f

′
J )) :=

maxj ‖fj − f ′
j‖∞. Consider the map

ΨK :







DΨ → RΨ

(hκ)κ∈K 7→
(

w(κ)φ
(

hκ
w(κ)

))

κ∈K

where K is a compact set, RΨ ⊂ L∞(G1, ...,GL;K) and

DΨ :=
{

(Hκ)κ∈K

∣

∣

∣

Hκ

w(κ)
∈ Dφ∀κ ∈ K, sup

κ∈K

∥

∥

∥w(κ)φ
( Hκ

w(κ)

)∥

∥

∥ < ∞
}

.

Note that with this definition, Vn = αn

(

ΨK(w(κ)ŷn,κ) − ΨK(XK)
)

where XK := ((κ, f1, ..., fJ ) 7→
w(κ)x(f1, ..., fJ )) and that Yn = αnw(κ)(ŷn,κ −XK). As long as infκ∈K |w(κ)| > 0, compact differentia-

bility of ΨK with derivative

(ΨK)′X :

{

VK → R

(hκ)κ∈K 7→ (φ′
xhκ)κ∈K .

is a direct consequence of Theorem 2.18 [here, VK is defined similarly to U with U replaced by V ]. To

see this, consider a sequence of real numbers rn ց 0 and hn ∈ D such that XK + rnhn ∈ DΨ for all n ∈ N

with hn → h ∈ VK . Then, by compact differentiability of Φ,

r−1
n (ΨK(XK + rnhn)−ΨK(XK)) = r−1

n w(·)(ΦK(X̃K + rnh̃n)− ΦK(X̃K)) → w(·)Φ′
K h̃.
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where X̃K := ((κ, f1, ..., fJ ) 7→ x(f1, ..., fJ )), h̃n := ((κ, f1, ..., fJ ) 7→ hn(κ, f1, ..., fJ )/w(κ)) and h̃ :=

((κ, f1, ..., fJ ) 7→ h(κ, f1, ..., fJ )/w(κ)). Finally, observing that Φ′
K is linear, compact differentiability of

ΨK and the definition of its derivative follow.

This result is of independent interest. For example, Gao and Zhao (2011) recently demonstrated that

compact differentiability can be used to establish large and moderate deviation principles. The findings

above allow to carry their results into the setting of statistics from subsamples and could for example be

used to analyze rejection probabilities of various breakpoint tests.

3 Applications

In this section, we demonstrate how the results in Section 2 can be applied to various subsample based

methodologies studied in the recent literature. Throughout this section, we will assume that we have a

sample of data X1, ...,Xn from a strictly stationary time series. The process ŷn,s,t is assumed to be based

on the sub-sampleX⌊ns⌋+1, ...,X⌊nt⌋, i.e. of the form given in equation (1) . In what follows, write θ = φ(x)

for the parameter of interest and define ϑ̂n,s,t := φ(ŷn,s,t). For notational convenience, we also consider

the quantity θ̂n,k,j which is computed from the data Xk,Xk+1, ...,Xj . Note that θ̂n,k,j = ϑ̂n,k/n−1,j/n. For

the sake of a shorter notation, introduce the abbreviation Vs,t := V(s, t, ·).

3.1 Self-normalization

For a weakly dependent stationary time series, inference on a finite-dimensional quantity (say, mean or me-

dian) typically involves a consistent estimation of the asymptotic variance matrix of the sample estimator.

The difficulty with the traditional approach lies in the bandwidth parameter(s) involved in the consistent

estimation, which also occurs for other existing approaches, such as sub-sampling [Politis and Romano

(1994)], moving block bootstrap [Künsch (1989)] and block-wise empirical likelihood [Kitamura (1997)].

To avoid the bandwidth selection, a general self-normalized approach to confidence interval construction

and hypothesis testing for a stationary time series has been developed in Shao (2010a). The basic idea is

to use recursive estimates to form an inconsistent estimator of asymptotic variance (matrix) of a statistic

and use a non-standard but pivotal limiting distribution to perform the inference. The SN approach is

convenient to implement as recursive estimates can be easily calculated with no need to develop new

algorithms. Moreover, it does not involve any bandwidth parameters and its finite sample performance

is comparable or could be superior to some other existing bandwidth-dependent inference methods, as

shown in Shao (2010a). Owing to these nice features, it has been recently extended to a few important

inference problems in time series; see Shao and Zhang (2010); Shao (2011, 2012); Zhou and Shao (2013),

among others.

The theory for the SN approach was first developed in Shao (2010a,b) by adopting a traditional approach,

which is based on a linearization of the statistic and assumptions on uniform negligibility of remainder
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terms. More precisely, Shao (2010a) assumed that

θ̂n,1,k = θ + k−1
k
∑

i=1

L(Xi) +Rn(k/n) (6)

where {Rn(k/n)}nk=1 denote negligible remainder terms. To describe the basic idea of Shao’s approach,

note that we generally expect that for a weakly dependent stationary time series and smooth functional

φ, Rn(1) = oP (n
−1/2) and

n−1/2
n
∑

j=1

L(Xj)  N(0,Σ), (7)

where Σ =
∑

k∈Z cov(L(X0), L(Xk)) > 0 is the so-called long run variance matrix. Further note that we

implicitly assume E[L(Xj)] = 0, which is trivially satisfied in many cases. Inference on θ is then based on

estimating the covariance matrix Σ consistently, which can be difficult as it involves a choice of bandwidth

parameters. To avoid those complications, Shao (2010a) proposed to consider the self-normalized statistic

Gn = n(θ̂n,1,n − θ)′V −1
n (θ̂n,1,n − θ)

where Vn = n−2
∑n

j=1 j
2(θ̂n,1,j− θ̂n,1,n)(θ̂n,1,j− θ̂n,1,n)

′ is the self-normalization matrix. In Shao (2010a,b),

the asymptotic distribution of Gn was derived under the following assumptions:

n−1/2

⌊nt⌋
∑

j=1

L(Xj)  Σ1/2
B(t), (8)

Rn(1) = oP (n
−1/2), n−2

n
∑

j=1

|jRn(j/n)|2 = op(1) (9)

with B denoting a vector of independent Brownian motions on [0, 1]. To verify (9), a common approach

is to derive a uniform Bahadur representation for θ̂n,1,⌊nt⌋ and control the order of Rn(t) uniformly over

t ∈ [0, 1]. Such a task is in general not easy and it requires a tedious case-by-case study. Under the

assumptions above, Shao (2010a) proved that

Gn  B
T (1)

(

∫ 1

0

(

B(t)− tB(1)
)(

B(t)− tB(1)
)T

dt
)−1

B(1), (10)

where the limiting distribution is pivotal and does not depend on the unknown covariance matrix Σ.

Using the results in Section 2, we can both considerably generalize the findings in Shao (2010a) and at

the same time avoid tedious calculations required to bound remainder terms. The key observation is that

the only result required to derive (10) is weak convergence of the process
(√

nt(ϑ̂n,0,t − θ)
)

t∈[0,1]
. In the

language of Section 2.1, this amounts to setting K = {0} × [0, 1]. Assuming that φ(x) is an element of

R
p, the quantity Vn(s, t, ·) can be viewed as a R

p−valued vector. Abusing notation, denote this vector

by Vn(s, t). Similarly, denote by Vs,t the vector V(s, t, ·). Some straightforward calculations show that

under assumptions (A1)-(A3), (C), (W) the statistic Gn can be represented as

Gn = V
T
n (0, 1)

(

∫ 1

0

(

Vn(0, t) − tVn(0, 1)
)(

Vn(0, t) − tVn(0, 1)
)T

dt
)−1

Vn(0, 1) + oP (1).
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An application of Theorem 2.7 with the set K = {0} × [0, 1] in combination with the discussion at the

beginning of this section and the continuous mapping theorem yields

Gn  V
T
0,1

(

∫ 1

0

(

V0,t − tV0,1

)(

V0,t − tV0,1

)T
dt
)−1

V0,1.

Under the assumption that V(0, t, ·) = Σ1/2
B(0, t, ·), the limit of the statistic Gn is pivotal. Note that the

limiting process will typically have this form in most settings with weakly dependent data, see Remark

2.13.

With the general machinery of Section 2 at hand, there are several extensions and remarks that can be

made to the self-normalization approach. First, observe that we can replace the self-normalization matrix

Vn with a more general statistic of the form

Vn(H) :=

∫

∆
(ϑ̂n,s,t − (t− s)ϑ̂n,0,1)(ϑ̂n,s,t − (t− s)ϑ̂n,0,1)

TdH(s, t)

with H denoting an arbitrary probability measure on ∆. By the continuous mapping theorem, we have

joint convergence of (Vn(H), ϑ̂n,0,1) to (W (H),V0,1) where

W (H) :=

∫

∆

(

Vs,t − (t− s)V0,1

)(

Vs,t − (t− s)V0,1

)T
dH(s, t).

Assuming thatW (H) is non-singular almost surely [which happens as soon asH places mass on sufficiently

many different points], the asymptotic distribution of the generalized self-normalized statistic Gn(H)

follows. We thus have derived the following result.

Proposition 3.1. Let assumptions (A1), (A2), (W), (C) hold and assume that either the support of

H is bounded away from the set {(t, t)|t ∈ [0, 1]} or that (A3) holds. Additionally, assume that W (H) is

non-singular almost surely. Then the generalized SN-statistic Gn satisfies

Gn(H) := V
T
n (0, 1)Vn(H)−1

Vn(0, 1)  V
T
0,1W (H)−1

V0,1.

Finally, note that by the discussion in Remark 2.8 it might be advantageous to exclude estimators θ̂n,k,l

that are based on too small proportions of data. By considering a modified version of the statistic Gn of

the form Ḡn(H) := V
T
n (0, 1)V̄n(H)−1

Vn(0, 1) with

V̄n(H) :=

∫

∆(ϑ̂n,s,t − (t− s)ϑ̂n,0,1)(ϑ̂n,s,t − (t− s)ϑ̂n,0,1)
T I{t− s > n−γ}dH(s, t)

∫

∆ I{t− s > n−γ}dH(s, t)
,

and arbitrary γ ∈ (0, 1/2), we would obtain the convergence Ḡn(H)  V
T
0,1W (H)−1

V
T
0,1 without the

need for assumption (A3).

3.2 Subsampling and fixed-b corrections

Sub-sampling [Politis and Romano (1994)] has been used in a wide range of inference problems for time

series. The basic idea is that the distribution of an estimator computed from a sufficiently large sub-

sample of the data should be close to that of the estimator from the whole data set. Confidence intervals
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and tests can then be constructed by approximating the unknown distribution of the estimator with sub-

sampling counterparts. To accommodate the time series dependence non-parametrically, it involves the

sub-sampling window width l, which needs to go to infinity as sample size goes to infinity but at a slower

rate to achieve consistent approximation. In practice, the choice of l affects the sub-sampling distribution

estimator and related operating characteristics, although its role does not show up in the conventional

first order asymptotics. In Shao and Politis (2013), the traditional sub-sampling method was calibrated

using a p-value based argument under the so-called fixed-b asymptotics [Kiefer and Vogelsang (2005)],

where b = l/n. For simplicity, assume that θ is R
d-valued. Defining N = n − l + 1, the sub-sampling

based estimator of the distribution function of ‖√n{θ̂n,1,n − θ}‖ evaluated at x is

Ln,l(x) = N−1
N
∑

j=1

I{‖
√
l(θ̂n,j,j+l−1 − θ̂n,1,n)‖ ≤ x}.

The corresponding p-value of the test statistic ‖√n(θ̂n,1,n − θ0)‖ for the null hypothesis θ = θ0 is

p̂n(b) = N−1
N
∑

j=1

I{‖
√
n(θ̂n,1,n − θ0)‖ ≤ ‖

√
l(θ̂n,j,j+l−1 − θ̂n,1,n)‖}.

Note that under the conditions l/n+1/l = o(1) and additional regularity assumptions, p̂n(b) has a uniform

asymptotic distribution, see Politis et al. (1999). Under the fixed-b asymptotic framework, l/n = b ∈ (0, 1]

is held fixed. Following an elementary approach, the limiting null distribution of p̂n(b), which equals

G(b) = (1− b)−1

∫ 1−b

0
I{‖Σ1/2

B(1)‖ ≤ ‖Σ1/2(B(b+ t)− B(t)− bB(1))‖/
√
b}dt

was derived in Shao and Politis (2013) by assuming that

θ̂n,j,j+l−1 = θ + l−1
j+l−1
∑

i=j

L(Xi) +Rn(j, j + l − 1),

that a similar representation holds for θ̂n,1,n, that (8) holds for {L(Xt)} with remainder Rn(1, n), and that

the remainder terms satisfy
√
n|Rn(1, n)| = op(1) and

√
l supj=1,··· ,N |Rn(j, j + l − 1)| = op(1). Verifying

the latter assumption for general functionals can be quite tedious and challenging.

Now, consider the general setup of Section 2 and let conditions (C), (W), (A1) and (A2) hold. We apply

Theorem 2.7 with K := {(t, t+ b)|t ∈ [0, 1 − b]} ∪ {(0, 1)} and assume that the map

h 7→ 1

1− b

∫ 1−b

0
I{‖h(0, 1)‖ ≤ ‖h(t, t + b)− bh(0, 1)‖/

√
b}dt

is continuous on a set of functions that contains the sample paths of ‖V‖ with probability one. In

particular, this is the case if V(s, t) = (t − s)Σ1/2(B(t) − B(s)) with Σ denoting a non-singular matrix

and B a vector of independent Brownian motions [see the arguments in Shao and Politis (2013)], which

is typically the case for weakly dependent stationary time series. From now on, assume that this is the

case. Observe that for θ = θ0 we have in the setting discussed above

p̂n(b) =
1

1− b

∫ 1−b

0
I{Vn(0, 1) ≤ ‖Vn(t, t+ b)− bVn(0, 1)‖/

√
b}dt+ oP (1),
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where the negligibility of remainder follows from an application of the continuous mapping theorem. The

results in Theorem 2.7 in combination with the continuous mapping theorem thus yield

p̂n(b)  
1

1− b

∫ 1−b

0
I{‖V(0, 1, ·)‖ ≤ ‖V(t, t+ b, ·)− bV(0, 1, ·)‖/

√
b}dt := P

as soon as assumptions (C), (W), (A1) and (A2) hold.

Unless θ is real-valued, the asymptotic distribution of the statistic p̂n(b) is in general not pivotal.

Shao and Politis (2013) proposed to estimate its distribution based on further sub-sampling. An al-

ternative is to consider block bootstrap approximations such as those discussed in Section 2.2. More

precisely, consider a bootstrap version for yn,s,t which is of the form given in (2) and denote it by ŷBn,s,t.

Define a bootstrap version for ϑ̂n,s,t through ϑ̂B
n,s,t := φ(ŷBn,s,t). Assume that the map φ is continuous.

Now Theorem 2.10 combined with the continuous mapping theorem for the bootstrap in probability [see

Theorem 10.8 in Kosorok (2008)] directly yields that under condition (WB)

p̂Bn (b) :=
1

1− b

∫ 1−b

0
I{

√
n‖ϑ̂B

n,0,1 − θ‖ ≤
√
nb‖ϑ̂B

n,t,t+b − ϑ̂B
n,0,1‖}dt

P
 

M
P.

Finally, note that the reasoning above does not rely on θ being R
p-valued and that it is thus also possible

to handle infinite dimensional parameters.

3.3 Testing for change points

Testing change points in a time series is a well-studied topic in econometrics and statistics; see Perron

(2006) for a recent review. A large class of tests in the literature is based on the so-called CUSUM

(cumulative sum) process and the test statistic is a smooth functional of the CUSUM process with

Kolmogorov-Smirnov (L∞) test and Cramer-von-Mises (L2) test being two prominent examples. To

accommodate the time series dependence and make the limiting null distribution pivotal, one needs to

obtain a consistent estimator of the long run variance as a studentizer. As mentioned previously, consistent

estimation involves a bandwidth parameter, the choice of which is even more difficult in the change point

testing problem. In particular, the fixed bandwidth (e.g., n1/3) is not adaptive to the magnitude of

dependence and the data-dependent bandwidth could lead to the so-called non-monotonic power problem

[Vogelsang (1999)], i.e., the power of the test can decrease when the alternative gets farther away from

the null. To overcome the non-monotonic power problem, Shao and Zhang (2010) proposed SN-based

tests in a general framework. Let θt = T (D(Xt)) ∈ R
q be the quantity of interest which depends on the

distribution of Xt denoted by D(Xt). The goal is to test if there is a change point in {θt}nt=1, i.e.

H0 : θ1 = · · · = θn

and the alternative hypothesis is

H1 : θ1 = · · · = θk∗ 6= θk∗+1 = · · · = θn for some unknown k∗, 1 ≤ k∗ < N.

This framework is general enough to include mean, median, autocorrelation at certain lags of a univariate

time series. Let Tn(k) = k/
√
n(θ̂n,1,k − θ̂n,1,n) and

Vn(k) = n−2

{

k
∑

t=1

t2(θ̂n,1,t − θ̂n,1,k)(θ̂n,1,t − θ̂n,1,k)
′
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+

n
∑

t=k+1

(n− t+ 1)2(θ̂n,t,n − θ̂n,k+1,n)(θ̂n,t,n − θ̂n,k+1,n)
′

}

.

Then the test statistic is defined as Gn = supk=1,··· ,n−1 Tn(k)
′Vn(k)

−1Tn(k). The asymptotic null distri-

bution was derived in Shao and Zhang (2010) using an elementary approach. Specifically, they rely on

the expansion of θ̂n,t1,t2 , i.e.,

θ̂n,t1,t2 = θ + (t2 − t1 + 1)−1
t2
∑

t=t1

L(Xt) +Rn(t1, t2).

Again the functional central limit theorem is assumed for {L(Xt)} (i.e., (8) holds) and the remainder

terms are assumed to be asymptotically negligible. In particular, Shao and Zhang (2010) assume that

sup
k=1,··· ,n

|kRn(1, k)| = op(n
1/2) and sup

k=1,··· ,n
|kRn(n− k + 1, n)| = op(n

1/2). (11)

The above condition (11) is not easy to verify and a detailed case-by-case study is needed.

Alternatively, consider the setting of Section 2. Under conditions (W), (A1), (A2) and (A3) with K =

({0} × [0, 1]) ∪ ([0, 1] × {0}) it is possible to show that Gn = oP (1) + supr∈[0,1]Hn(r) where

Hn(r) := (ϑ̂n,0,r − ϑ̂n,0,1)
T Ŵ−1

r,n (ϑ̂n,0,r − ϑ̂n,0,1)

with

Ŵr,n :=

∫ r

0
(ϑ̂n,0,s − ϑ̂n,0,r)

T (ϑ̂n,0,s − ϑ̂n,0,r)ds+

∫ 1

r
(ϑ̂n,s,1 − ϑ̂n,r,1)

T (ϑ̂n,s,1 − ϑ̂n,r,1)ds.

Applying Theorem 2.7 in combination with the continuous mapping theorem yields weak convergence of

Gn to

sup
r∈[0,1]

(V0,r − rV0,1)
TW−1

r (V0,r − rV0,1)

where

Wr :=

∫ r

0

(

V0,s −
s

r
V0,r

)T(

V0,s −
s

r
V0,r

)

ds+

∫ 1

r

(

Vs,1 −
1− s

1− r
Vr,1

)T(

Vs,1 −
1− s

1− r
Vr,1

)

ds.

Finally, note that by considering the modification G̃n := supr∈[n−γ ,1−n−γ ]Hn(r) with γ ∈ (0, 1/2) arbitrary,

assumption (A3) can be dropped. See Remark 2.8 for further details.

A Proofs of main results

Proof of Theorem 2.7 The proof consists of two steps. First, we show that the convergence holds for

K with inf(s,t)∈K t − s > 0, and second, we extend the result to general sets K ⊂ ∆ under assumption

(A3). The first step follows by an application of the functional delta method [see Theorem 3.9.4 in

Van der Vaart and Wellner (1996)] in combination with Theorem 2.18. In particular, the space D0 can

be identified with L(F1, ...,FJ ;K) since a finite norm ‖H‖L is equivalent to the distance ‖H−(x)(s,t)∈K‖L
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being finite. Similarly, the space RΨ is identified with ℓ∞(G ×K) and the metric dR,Φ corresponds to the

supremum norm on L∞(G1, ...,GL;K). Observe that

αn(ŷn,s,t(f1, ..., fJ )− x(f1, ..., fJ )) =
1

t− s
Yn(s, t, f1, ..., fJ ).

The functional delta method in combination with elementary considerations thus implies

αn(φ(ŷn,s,t)− φ(x))  
1

t− s
φ′
xY(s, t, ·) in L∞(G1, ...,GL;K),

the factor 1
t−s can be moved in front since φ′

x is a linear map. Multiplying both sides by t − s, the

Continuous Mapping Theorem [see Theorem 1.3.6 in Van der Vaart and Wellner (1996)] completes the

first step of the proof.

For the second step, define the set KS := {(s, t) ∈ K|t− s ∈ S} and consider the approximating processes

Ai,n := (t− s)αnI(s,t)∈K[1/i,1]
(φ(ŷn,s,t)− φ(x)), Ai := φ′

xY(s, t, ·)I(s,t)∈K[1/i,1]
.

It then suffices to verify the following three statements [see Bücher et al. (2011)]

(i) For every i ∈ N : Ai,n  Ai for n → ∞,

(ii) Ai  φ′
xY(s, t, ·) for i → ∞,

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P
∗(‖Ai,n − Vn‖ > ε) = 0.

The first statement is the weak convergence established in the first step. For (ii), note that

∥

∥

∥
Ai − φ′

xY(s, t, ·)
∥

∥

∥
≤ ‖φ′

x‖op sup
(s,t)∈K[0,1/i]

sup
j

sup
f∈Fj

|Yj(s, t, f)|,

[here, ‖ · ‖op denotes the operator norm] and the right-hand side converges to zero in probability, this is

a direct consequence of assumption (A1).

Finally, for a proof of (iii) note that for βn := γn ∨ α
−1/2
n = o(1) from Lemma B.2

‖Ai,n − Vn‖ ≤ αn sup
(s,t)∈K

[βnn−1/2,1/i]

(t− s)‖φ(ŷn,s,t)− φ(x)‖ + sup
(s,t)∈K

[0,βnn−1/2]

(t− s)‖φ(ŷn,s,t)− φ(x)‖

≤ C sup
(s,t)∈K

[βnn−1/2,1/i]

sup
j

sup
f∈Fj

|Yn,j(s, t, f)|+ sup
(s,t)∈K

[0,βnn−1/2]

(t− s)
(

‖φ(x̂n,t)‖+ ‖φ(x)‖
)

+I
{

sup
(s,t)∈K

[βnn−1/2,1/i]

(t− s)αn‖ŷn,s,t − x‖ > ε
}

αn sup
(s,t)∈K

[βnn−1/2,1/i]

‖φ(ŷn,s,t)− φ(x)‖

=: Rn,1 +Rn,2 +Rn,3.

Here the second inequality follows by an application of Lemma B.1 on the set
{

sup(s,t)∈K
[βnn−1/2,1/i]

αn‖ŷn,s,t−

x‖ ≤ ε
}

after observing that by definition

αn‖ŷn,s,t − x‖ =
1

t− s
sup
j

sup
f∈Fj

|Yn,j(s, t, f)|.

22



Condition (A3) implies that Rn,2 = o∗P (1). To see that Rn,1 +Rn,3 converge to zero in outer probability,

define the set

Sj(i, ε) :=
{

y ∈ ℓ∞(K ×Fj)
∣

∣

∣
sup

(s,t)∈K[0,1/i]

sup
f∈Fj

|y((s, t), f)| ≥ ε
}

.

This set is closed, and by the Portmanteau theorem [Theorem 1.3.4 in Van der Vaart and Wellner (1996)]

combined with the weak convergence of Ynj and assumption (A1) on Y we obtain

lim sup
n→∞

P ∗(Ynj ∈ Sj(i, ε)) ≤ P (Yj ∈ Sj(i, ε))

for j = 1, ..., J . By condition (A1), limi→∞ P (Yj ∈ Sj(i, ε)) = 0 for every ε > 0.

This shows that Rn,1 = o∗P (1) and Rn,3 = o∗P (1). Thus the proof is complete. ✷

Proof of Theorem 2.10 The first assertion follows by an application of the bootstrap functional delta

method [see e.g. Theorem 12.1 in Kosorok (2008)]. For more details on the appropriate identification of

spaces, see the proof of Theorem 2.7 in the present note. In order to prove the second part, define the set

KS := {(s, t) ∈ K|t− s ∈ S} and consider

Ab
i,n := (t− s)αnI(s,t)∈K[1/i,1]

(φ(ŷbn,s,t)− φ(ŷn,s,t)), Ai := φ′
xY(t, ·)I(s,t)∈K[1/i,1]

.

By Lemma B.3 it then suffices to verify the following three statements which can be regarded as adaptation

of Theorem 4.2 in Billingsley (1968) to the present setting

(i) For every i ∈ N : Ab
i,n

P
 

M
Ai for n → ∞,

(ii) Ai  φ′
xY(s, t, ·) for i → ∞,

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P
∗(‖Ab

i,n − V
b
n‖ > ε) = 0.

Assertion (i) follows from the first part. Assertion (ii) can be established by exactly the same arguments

as the corresponding statement in the proof of Theorem 2.7. For a proof of the third assertion, note that

Y
b
n

P
 

M
Y implies Y

b
n  Y, see e.g. the proof of Theorem 10.4, assertion (ii) ⇒ (i) in Kosorok (2008).

Thus assertion (iii) follows by exactly the same arguments as (iii) in the proof of Theorem 2.7. Hence the

proof is complete. ✷

Proof of Proposition 2.12 Observe the representation

ŷn,s,t(·)− x(·) = n

(⌊nt⌋ − ⌊ns⌋) ∨ 1

(⌊nt⌋
n

(x̂n,t − x)− ⌊ns⌋
n

(x̂n,s − x)
)

and thus setting ′0/0 = 0′

Yn(s, t, ·) =
n(t− s)

(⌊nt⌋ − ⌊ns⌋) ∨ 1

(⌊nt⌋
nt

Gn(t, ·) −
⌊ns⌋
ns

Gn(s, ·)
)

Observe that
∣

∣

∣

⌊nt⌋
nt − 1

∣

∣

∣
≤ 1

⌊nt⌋∨1 and
∣

∣

∣

n(t−s)
(⌊nt⌋−⌊ns⌋)∨1 − 1

∣

∣

∣
≤ 3

(⌊nt⌋−⌊ns⌋)∨1 . Defining Ỹn(s, t, ·) := Gn(t, ·) −

Gn(s, ·), observe that Ỹn  Y by the continuous mapping theorem. Moreover, supt

∥

∥

∥

⌊nt⌋
nt Gn(t, ·) −
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Gn(t, ·)
∥

∥

∥
= o∗P (1) since for t ≥ n−1/4 the factor ⌊nt⌋

nt tends to one uniformly and since supt≤n−1/4 ‖Gn(t, ·)‖ =

o∗P (1) by arguments similar to those used to establish the negligibility of Rn,1 at the end of the proof of

Theorem 2.7. Thus it remains to show that
(

n(t−s)
(⌊nt⌋−⌊ns⌋)∨1 − 1

)

Ỹn(s, t, ·) is uniformly small. This can be

done by similar arguments [distinguish the cases t − s ≤ n−1/4 and t − s > n−1/4]. This completes the

proof. ✷

Proof of Theorem 2.16 Since it suffices to show asymptotic tightness of each process Gn,j individ-

ually, we will focus on Gn,1. To simplify notation, define Zn := Gn,1, F := F1, Fδ := F1,δ. Start by

noting that under the assumptions of the theorem together with (5) we have for some finite constant C1

sup
k∈N

E
∗‖Zk(1, ·)‖qF ≤ C1 < ∞ (12)

To see this, fix δ > 0 and cover the set F with N balls of radius δ and centers f1, ..., fN . Then make use

of the bound

sup
k∈N

E
∗‖Zk(1, ·)‖qF ≤ max

1≤k≤n0

E
∗‖Zk(1, ·)‖qF + max

j=1,...,N
sup
k∈N

E
∗‖Zk(1, fj)‖q + sup

n≥n0

E
∗‖Zn(1, ·)‖qFδ

and condition (5).

In order to establish asymptotic tightness of G, apply Theorem 1.5.7 in Van der Vaart and Wellner (1996)

with the metric d((s, f), (t, g)) := ρ(f, g) + |s− t|. By the triangle inequality, we have

sup
|s−t|+ρ(f,g)<δ

|Zn(s, f)− Zn(t, g)| ≤ sup
0≤t≤1

‖Zn(t, f)‖Fδ
+ sup

|s−t|<δ
‖Zn(s, f)− Zn(t, f)‖F

Start by considering the first term. Define Sk(g) =
∑k

j=1{g(Xi)− Eg(Xi)} and note that

sup
0≤t≤1

‖Zn(t, f)‖Fδ
≤ max

1≤k≤n

√

k

n
‖Zk(1, ·)‖Fδ

=
1√
n

max
1≤k≤n

‖Sk‖Fδ
.

Fix ǫ ∈ (0, {1− 2−1/2+1/q}q/(q−1)/2q/(2q−2)). Under (4), there exists a δ0 > 0 and n0 ∈ N, such that when

δ ∈ (0, δ0) and n ≥ n0(ǫ), E
∗‖Zn(1, ·)‖qFδ

≤ ǫ2. Moreover, under (12) we have max1≤k≤n0 ‖Sk‖Fδ
≤ C1

√
n0

for all n0 ∈ N. By the Markov inequality and Proposition 1(ii) in Wu (2007), for q > 2, d = dn =

⌊log n/(log 2)⌋+ 1,

P ∗( max
1≤k≤n

‖Sk‖Fδ
>

√
nǫ) ≤ (

√
nǫ)−q

E
∗[ max
1≤k≤n

‖Sk‖qFδ
]

≤ (
√
nǫ)−q





d
∑

j=0

2(d−j)/q

{

E
∗ sup
g∈Fδ

|S2j |q
}1/q





q

≤ ǫ−qn−q/2



O(n) +







d
∑

j=⌊logn0/(log 2)⌋+1

2(d−j)/q(ǫ2q2jq/2)1/q







q



≤ ǫ−qO(n−q/2+1) + n−q/2ǫq





d
∑

j=⌊logn0/(log 2)⌋+1

2(d−j)/q(2jq/2)1/q





q
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≤ ǫ−qO(n−q/2+1) +
2q/2

{1− 2−1/2+1/q}q ǫ
q

< ǫ

for n ≥ n1(ǫ) ∨ n0(ǫ), where n1(ǫ) is chosen such that the last inequality holds. Since ǫ was arbitrary,

we have shown that lim supn→∞ P ∗(sup0≤t≤1 ‖Zn(t, f)‖Fδ
> ǫ) < ǫ for all δ < δ0. It thus remains to

consider the second term. Since the increments of Zn(s, f) in s are stationary, the above probability can

be bounded by

⌈1
δ
⌉P ∗

(

sup
0≤s≤δ

‖Zn(s, f)‖F > ǫ

)

= ⌈1
δ
⌉P ∗

(

max
1≤k≤nδ

‖
√
kGk‖F >

√
nǫ

)

. (13)

Let d(δ) = ⌊log(nδ)/(log 2)⌋ + 1. Again by the Markov inequality and Proposition 1(ii) in Wu (2007),

P ∗

(

max
1≤k≤nδ

‖Sk‖F >
√
nǫ

)

≤ (
√
nǫ)−q

E
∗ max
1≤k≤nδ

‖Sk‖qF

≤ (
√
nǫ)−q







d(δ)
∑

j=0

2(d(δ)−j)/q
(

E
∗‖S2j‖qF

)1/q







q

≤ (
√
nǫ)−q







d(δ)
∑

j=0

2(d(δ)−j)/qC
1/q
1 2j/2







q

≤ (
√
nǫ)−qC12

d(δ)q/2 1

{1− 2−(1/2−1/q)}q
≤ C2ǫ

−qδq/2

for n sufficiently large. Combined with (13), we get lim supn→∞ P ∗(max0≤jδ≤1 supjδ≤s≤(j+1)δ ‖Zn(s, f)−
Zn(jδ, f)‖F > ǫ) < ǫ when δ < (ǫq+1/C2)

1/(q/2−1). The proof is thus complete.

Proof of Theorem 2.18 Let an = o(1) and H(n) denote a sequence in D0 with H(n) → H ∈ U

such that X + anH
(n) ∈ DΦ ∀n ∈ N. We need to show that

a−1
n

(

Φ(X + anH
(n))− Φ(X)

)

→ Φ′
XH.

Assume that this does not hold. Then there exists a sequence tn and a positive number b such that

dR

(

a−1
n (φ(x+ anH

(n)
tn )− φ(x)), (φ′

x ·Htn)
)

≥ b (14)

for all n ≥ N0. On the other hand, the sequence H
(n)
tn has a subsequence H

(nk)
tnk

which converges to Ht∞

for some t∞ ∈ K. To see that this is the case, start by noting that tn is a sequence in a compact metric

space, i.e. it has a convergent subsequence tnk
→ t∞ with t∞ ∈ K. The definition of the set U then

implies that Htnk
→ Ht∞ . Together with the uniform convergence supt dD(H

(n)
t ,Ht) = o(1) this yields

H
(nk)
tnk

→ Ht∞ . Now quasi compact differentiability of φ tangentially to C0〈D0〉 implies

a−1
n

(

φ(x+ anH
(nk)
tnk

)− φ(x)
)

→ φ′
xHt∞ ,

and together with continuity of φ′
x this contradicts (14). Thus the proof is complete. ✷
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B Auxiliary technical results

Lemma B.1. Denote by (R, ‖ · ‖R) a normed vector space. Consider a second vector space D with

subsets Dφ,D0 ⊂ D,C0 ⊂ D0 and assume that (D0, ‖ · ‖D) is a normed vector space. Let φ : Dφ → R be

quasi compactly differentiable at x tangentially to C0〈D0〉 and assume 0 ∈ C0. Then there exist constants

ε > 0,K < ∞ such that

‖φ(x) − φ(x+ y)‖R ≤ K‖y‖D ∀y ∈ D0 : ‖y‖D ≤ ε, x+ y ∈ Dφ. (15)

Proof Assume that (15) does not hold. Then for any pair ε > 0,K < ∞ there exists a yK,ε ∈ D0

such that x + yK,ε ∈ Dφ, ‖yK,ε‖D ≤ ε and ‖φ(x) − φ(x + yK,ε)‖R > K‖yK,ε‖D. Consider the sequence

zn := yn2,n−2 and define αn := ‖zn‖D 6= 0. Then

∥

∥

∥

φ(x+ nαn(nαn)
−1(zn))− φ(x)

nαn

∥

∥

∥

R
>

n2αn

nαn
= n −→ ∞.

Moreover ‖(nαn)
−1(zn)‖D = n−1 = o(1), i.e. (nαn)

−1(zn) → 0. This yields a contradiction since quasi

compact differentiability of φ implies that [note that nαn ≤ n−1 = o(1)]

φ(x+ nαn(nαn)
−1(zn))− φ(x)

nαn
−→ φ′

x0.

Thus the proof is complete. ✷

Lemma B.2. Under assumptions (W) and (A1) there exists a sequence of real numbers γn = o(1) such

that sup(s,t)∈K
α−1
n γn

‖ŷn,s,t − x‖ = o∗P (1) where we defined Ka := {(s, t) ∈ K|t− s ≥ a}.

Proof Define KC
a as the complement of Ka in K and set

Bn := sup
(s,t)∈KC

α
−1/2
n

sup
f1,...,fJ

‖Yn(s, t, f1, ..., fJ )‖.

By asymptotic equicontinuity of Yn [see the discussion in the proof of Theorem 2.7 for more details and

note that sups=t supf1,...,fJ |Yn(s, t, f1, ..., fJ )| ≡ 0 a.s.] we have Bn = o∗P (1). This implies

∀ε > 0 ∃n0(ε) ∈ N : (∗) ∀n ≥ n0(ε) P
∗(Bn > ε) < ε.

Note that a 7→ n0(a) is decreasing since for any a < b we have P ∗(Bn > a) < a ⇒ P ∗(Bn > b) < b. Set

N0(ε) := 2 inf{n0(ε)|(∗) holds} and define

δn := 2 inf{ε > 0|n > N0(ε)}.

By construction N0(δn) < n, and thus P ∗(Bn > δn) < δn. Moreover, δn → 0 since by construction

δn ≤ ε ∀n ≥ N0(ε/3). Defining γn = δ
1/2
n yields Bn = o∗P (γn). Note that

sup
(s,t)∈K

α−1
n γn

‖ŷn,s,t − x‖ ≤ sup
(s,t)∈K

α
−1/2
n

‖ŷn,s,t − x‖+ sup
(s,t)∈KC

α
−1/2
n

∩K
γnα−1

n

‖ŷn,s,t − x‖.
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Now observe that

sup
(s,t)∈K

α
−1/2
n

‖ŷn,s,t − x‖ ≤ 2α−1/2
n sup

(s,t)∈K
α
−1/2
n

‖Yn(s, t, ·)‖ = o∗P (1),

by arguments similar to those used to establish the negligibility of Rn,1 at the end of the proof of Theorem

2.7. Similarly

sup
(s,t)∈KC

α
−1/2
n

∩K
γnα−1

n

‖ŷn,s,t − x‖ ≤ γ−1
n sup

(s,t)∈KC

α
−1/2
n

|Yn(s, t, ·)‖ = γ−1
n Bn = o∗P (1)

This completes the proof. ✷

Lemma B.3. Given a sequence of random variables M1,M2, ..., and a sequence of random elements

V
b
n(M1, ...,Mn) in a normed space (D, ‖ · ‖D), assume that the map (M1, ...,Mn) → V

b
n(M1, ...,Mn) is

measurable for every n ∈ N outer almost surely [the randomness in V
b
n is allowed to come from sources

apart from the Mi]. Assume that for i ∈ N there exist approximations Ab
i,n, Ai such that (M1, ...,Mn) →

Ab
i,n(M1, ...,Mn) is measurable for every i, n ∈ N outer almost surely.

(i) For every i ∈ N : Ab
i,n

P
 

M
Ai for n → ∞,

(ii) Ai  V for i → ∞,

(iii) For every ε > 0 : lim
i→∞

lim sup
n→∞

P
∗(‖Ab

i,n − V
b
n‖ > ε) = 0.

where Ai,V denote a tight processes. Then V
b
n

P
 

M
V.

Proof of Lemma B.3 We need to show that

(a) supf∈BL1

∣

∣EMf(Vb
n)− Ef(V)

∣

∣→ 0 in outer probability,

(b) EMf(Vb
n)

∗ − EMf(Vb
n)∗

P→ 0 for all f ∈ BL1.

Begin by observing that for every i ∈ N, every ω, and every f ∈ BL1

∣

∣

∣
EMf(Vb

n)− Ef(V)
∣

∣

∣
≤
∣

∣

∣
EMf(Vb

n)− EMf(Ab
i,n)
∣

∣

∣
+
∣

∣

∣
EMf(Ab

i,n)− Ef(Ai)
∣

∣

∣
+ |Ef(Ai)− Ef(V)| .

Moreover, for every ω

sup
f∈BL1

∣

∣

∣
EMf(Vb

n)− EMf(Ab
i,n)
∣

∣

∣
≤ sup

f∈BL1

EM

∣

∣

∣
f(Vb

n)− f(Ab
i,n)
∣

∣

∣
≤ EM

[

‖Vb
n −Ab

i,n‖∗ ∧ 2
]

.

In particular, this implies that for any γ > 0

E
∗
[

sup
f∈BL1

∣

∣

∣
EMf(Vb

n)− EMf(Ab
i,n)
∣

∣

∣

]

≤ E

[

‖Vb
n −Ab

i,n‖∗ ∧ 2
]

≤ 2P(‖Vb
n −Ab

i,n‖∗ > γ) + γ.

Thus (iii) yields

lim
i→∞

lim sup
n→∞

E
∗
[

sup
f∈BL1

∣

∣

∣
EMf(Vb

n)− EMf(Ab
i,n)
∣

∣

∣

]

= 0.
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Fix arbitrary ε, η > 0. The computations above yield the existence of an i1 ∈ N such that for all i ≥ i1

lim sup
n→∞

P
∗
(

sup
f∈BL1

∣

∣

∣EMf(Vb
n)− EMf(Ab

i,n)
∣

∣

∣ > ε/3
)

< η/3.

Moreover, by (ii) and the definition of weak convergence, there exists an i2 ∈ N such that for all i ≥ i2

P
∗
(

sup
f∈BL1

|Ef(Ai)− Ef(V)| > ε/3
)

< η/3.

Set k = i1 ∨ i2. Then (i) implies as n → ∞

sup
f∈BL1

∣

∣

∣
EMf(Ab

k,n)− Ef(Ak)
∣

∣

∣
= oP∗(1),

and combining all the results above we see that

lim sup
n→∞

P
∗
(

sup
f∈BL1

∣

∣

∣EMf(Vb
n)− Ef(V)

∣

∣

∣ > ε
)

< η.

Since η, ε were arbitrary, this establishes (a). For a proof of (b), note that (i) implies Ab
i,n  Ai

since conditional weak convergence implies unconditional weak convergence [see the proof of Theorem

10.4, assertion (ii) ⇒ (i) in Kosorok (2008)]. Thus, by an the results in Bücher et al. (2011), (i)-(iii)

imply that V
b
n  V. In particular, this implies asymptotic measurability of V

b
n [see section 1.3 in

Van der Vaart and Wellner (1996)], and together with the continuity of f ∈ BL1 this shows that f(V
b
n)  

f(V) by an application of the continuous mapping theorem. Thus EMf(Vb
n)

∗ − EMf(Vb
n)∗ converges to

zero in L1, hence also in probability. Now the proof is complete. ✷
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