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The catalytic cycle starts with

the dirhodium-tetraacetate I

exchanging one ligand for

the carboxylic acid substrate

in a base-assisted cyclo-

metallation deprotonation

(CMD) step, analogous to

the observations with aryl

phosphines. This resulting

intermediate II reacts with

the aryl bromide, resulting in

the diaryl rhodium complex

III and RhIII acetate VI. The

product is formed by

reductive elimination from III

to IV and salt metathesis,

yielding intermediate RhI-salt

V. Comproportionation of V

and VI regenerate the

catalyst I.
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Rhodium acetate effectively promotes the carboxylate-directed ortho-arylation of (hetero)aromatic carboxylates with aryl

bromides. The main a,dvantage of this phosphine-free, redox-neutral method arises from its efficiency in assembling biologically meaningful

electron-rich arylpyridines, which are problematic substrates in known C-H arylations using Pd, Ru, and Ir catalysts.

In B10, we elucidate the active species during the initial catalysis cycle utilizing both experimental clues as well as DFT calculations. We

conclude that the initially binuclear Rh-species splits up during the cycle but can reform later, or promote another catalytic cycle.

Rhodium-Catalyzed ortho-Arylation of (Hetero)aromatic Acids
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[a] Reactions conditions: 1 (0.5 mmol), 2a (0.75 mmol), 0.25 mol%

Rh2(OAc)4, K2CO3 (1.5 equiv), DMF (2 mL), 140°C, 18 h. Yields of the

corresponding methyl esters after esterification with K2CO3 (2 equiv) and

MeI (5 equiv) in NMP. [b] 1 mol% Rh2(OAc)4. [c] 4 mol% Rh2(OAc)4. [d]

Isolated as the corresponding dimethyl amine. [e] 2a (1.25 mmol).
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Arylated pyridines represent a key motif in a

large number of pharmaceutically active substances. The use

of carboxylic acids as directing groups during the construction of

large molecules is common, as they often represent leftovers

from the construction of heterocycles and can be easily modified

or removed from the final product.

Carboxylic acid directed ortho-substitution of nicotinic acids

have been described previously by Larossa, utilizing a

sophisticated Pd catalyst. In this research, we utilize simple and

readily available Rh2(OAc)4 as catalyst for ortho-arylation of

nicotinic acids.

DFT-calculations support the suggested

catalytic cycle. The critical dissociation of the

dimeric species II into III and VI drive the

reaction. The final comproportionation is

supported by the experimentally observed

stability of the Rh2-carboxylate I.


