

Ruthenium-Hydride and –Vinylidene Species as key Intermediates in Hydroamidation Reactions

Matthias Arndt, Mathieu Blanchot, Kifah S. M. Salih, Annette E. Buba, Lukas J. Gooßen*

Institut für Organische Chemie, TU Kaiserslautern, Erwin-Schrödinger-Straße-54, 67663 Kaiserslautern, Tel.: (+49) 0631 205 2046, goossen@chemie.uni-kl.de

Abstract: The enamide moiety is an important motif often encountered in biologically active compounds and synthetic drugs. We have previously developed rutheniumbased complexes as effective catalysts for the anti-Markovnikov addition of amides, and thioamides to terminal alkynes.¹ This method proved to be suitable for the synthesis of several natural products, namely botryllamides C and E, lansiumamides A and B. These new reaction pathways proceed in only one to three steps and yield the products in 57 to 98%, starting from cheap and easily available compounds.²

Comprehensive mechanistic studies were performed with the goal of getting a better understanding of the catalytic cycle. In this context the reaction mixture was investigated in situ by NMR (¹H, ¹H{P}, ²H, ³¹P, ³¹P{H}, PP-COSY, HP-HMQC), ESI-MS/ -MS-MS and IR spectroscopy. Complemental deuterium labelling experiments and kinetic studies were carried out and lead to the conclusion that a redox neutral mechanism must be excluded for the hydroamidation. The new findings support a catalytic cycle starting from a ruthenium(0) species. Oxidative addition of the N-H nucleophile results in the formation of a ruthenium-amide-hydride species. The alkyne then inserts into the ruthenium-hydride bond generating a ruthenium-vinyl species, which in the rate-determining step rearranges to a ruthenium-vinylidene-hydride intermediate. This mechanism explains the anti-Markovnikov selectivity of such hydroamidation reactions and their restriction to terminal alkyne substrates.

The Enamide Functionality

The enamide moiety is an important substructure often found in natural products and synthetic drugs.³ Enamides and their derivatives are also versatile synthetic intermediates, e. g. for the preparation of heterocycles, chiral amines or amino acids.

Mechanistic Investigations⁵

In situ NMR-Experiments

¹H-NMR experiments with 2-pyrrolidinone after heating to 100°C for 5 min. a) ¹H-NMR (C₆D₆, 600 MHz, 298 K), b) ${}^{1}H{}^{31}P{}$ -NMR (C₆D₆, .400 MHz, 298 K).

Botryllamide E

"Dream Reactions": Addition of Amides, Imides and Thioamides to Terminal Alkynes^{1,4}

Traditional syntheses of enamides require harsh conditions, lead to the formation of mixtures of E/Z products or suffer from the limited availability of the starting materials.

A much more attractive synthetic access is the Ru-catalyzed addition of amides to alkynes:

ΔT

Mechanism for the Ru-catalyzed Hydroamidation

- no 1,2-proton shifts \rightarrow confirmed *via* deuterium-labeling experiments
- formation of E-enamides with sterically less hindered ligands (e.g. P^nBu_3 , P^nOc_3) \rightarrow thermodynamically favored product
- formation of Z-enamides with bulky, bidentate ligands (e.g. dcypm, dcypb) \rightarrow repulsion of R³ and ligands (Ru-H-vinylidene species)

Literature and Further Reading (see also <u>www.chemie.uni-kl.de/goossen</u>)

- (1) a) L. J. Gooßen, J. E. Rauhaus, D. Deng, Angew. Chem. Int. Ed. 2005, 44, 4042; b) L. J. Gooßen, K. S. M. Salih, M. Blanchot, Angew. Chem. Int. Ed. 2008, 47, 8492, c) L. J. Gooßen, M. Arndt, M. Blanchot, F. Rudolphi, F. Menges, G. Niedner-Schatteburg, Adv. Synth. Cat. 2008, 350, 2701.
- L. J. Gooßen, M. Blanchot, M. Arndt, K. S. M. Salih, Synlett 2010, 1685. (2)
- a) Yet, L. Chem. Rev. 2003, 103, 4283; b) Stefanuti, I.; Smith, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735; c) Rao, M. R.; Faulkner, D. J. J. Nat. Prod. 2004, 67, 1064. (3)
- a) L. J. Gooßen, M. Blanchot, C. Brinkmann, K. Gooßen, R. Karch, A. Rivas-Nass, J. Org. Chem. 2006, 71, 9506; b) L. J. Gooßen, M. Blanchot, K. S. M. Salih, K. Gooßen, Synthesis 2009, 2283; c) L. J. (4) Gooßen, M. Blanchot, K. S. M. Salih, R. Karch, A. Rivas-Nass, Org. Lett. 2008, 10, 4497; d) A. E. Buba, M. Arndt, L. J. Gooßen J. Organomet. Chem. 2010, in press.
- Unpublished results. (5)
- (6) M. Tokunaga, T. Suzuki, N. Koga, T. Fukushima, A. Horiuchi, Y. Wakatsuki, J. Am. Chem. Soc. 2001, 123, 11917.
- M. Oliván, E. Clot, O. Eisenstein, K. G. Caulton, Organometallics 1998, 17, 3091. (7)

3rd EuCheMS 2010 Chemistry Congress

29.08 – 02.09.2010 Nürnberg / Germany