SUPERVISED LEARNING AND CO-TRAINING

<u>Malte Darnstädt</u>, Hans Ulrich Simon and Balázs Szörényi **Ruhr-University Bochum and University of Szeged**

CONFERENCE ON ALGORITHMIC LEARNING THEORY 2011, ESPOO October 7, 2011

RUB

Outline

1. Motivation and 'What is Co-Training?'

- 2. The disagreement coefficient
- 3. Label complexity bounds
- 4. Combinatorial bounds
- 5. Final Remarks

RUB

department of mathematics and computer science research group | Malte Darnstädt

Motivation Supervised vs. Semi Supervised Learning

Supervised Learning:

- Concept class ${\mathcal C}$ with target $h^* \in {\mathcal C}$
- Distribution ${\mathbb P}$ over instance space X
- Labeled sample of size m

• Upper bound:
$$m = O\left(\frac{d \cdot \log 1/\varepsilon + \log 1/\delta}{\varepsilon}\right) = \widetilde{O}\left(\frac{d}{\varepsilon}\right)$$

• Lower bound:
$$m = \Omega\left(\frac{d + \log 1/\delta}{\varepsilon}\right) = \widetilde{\Omega}\left(\frac{d}{\varepsilon}\right)$$

RUB

department of mathematics and computer science research group | Malte Darnstädt

Motivation Supervised vs. Semi Supervised Learning

Semi Supervised Learning:

- Additional unlabeled sample
- - For special classes and distributions:
 Ben-David et al (2008)
 - For finite classes and 'most' distributions: Simon and D. (2011)

Co-Training with conditional independence by Blum and Mitchell (1998)

- Data points have two 'views': $x = (x_1, x_2), X = X_1 \times X_2$
- Two target concepts: $h_1^* \in C_1, h_2^* \in C_2$
- Distribution \mathbb{P} over $X_1 \times X_2$
 - Perfectly compatible: $h_1^*(x_1) = h_2^*(x_2)$ with probability 1
 - Conditional independence given the label:

$$\mathbb{P}(x_1, x_2|+) = \mathbb{P}(x_1|+) \cdot \mathbb{P}(x_2|+)$$
$$\mathbb{P}(x_1, x_2|-) = \mathbb{P}(x_1|-) \cdot \mathbb{P}(x_2|-)$$

Co-Training with conditional independence by Blum and Mitchell (1998)

- Balcan and Blum (2010) give a Semi Supervised algorithm that learns with **just one labeled example**!
- Power of unlabeled data?

Co-Training with conditional independence by Blum and Mitchell (1998)

- Balcan and Blum (2010) give a Semi Supervised algorithm that learns with **just one labeled example**!
- Power of unlabeled data?

Semi Supervised Co-Training

Supervised

Co-Training with conditional independence by Blum and Mitchell (1998)

- Balcan and Blum (2010) give a Semi Supervised algorithm that learns with **just one labeled example**!
- Power of unlabeled data?

Semi Supervised Co-Training Supervised Co-Training

Outline

- 1. Motivation and 'What is Co-Training?'
- 2. The disagreement coefficient
- 3. Label complexity bounds
- 4. Combinatorial bounds
- 5. Final Remarks

The disagreement region definition

$$DIS(V) := \{x \in X | \exists h, h' \in V : h(x) \neq h'(x)\}$$
for any subset $V \subseteq C$ (usually a version space)

The disagreement region definition

$$DIS(V) := \{x \in X | \exists h, h' \in V : h(x) \neq h'(x)\}$$
for any subset $V \subseteq C$ (usually a version space)

The disagreement coefficient definition

$$\theta(\mathcal{C}, \mathcal{H}|\mathbb{P}, h^*, \mathsf{sample}) := \frac{\mathbb{P}(\mathrm{DIS}(V_{\mathcal{C}}))}{\sup_{h \in V_{\mathcal{H}}} \mathbb{P}(h(x) \neq h^*(x))}$$
$$\theta(\mathcal{C}, \mathcal{H}) := \sup_{\mathbb{P}, h^*, \mathrm{sample}} \theta(\mathcal{C}, \mathcal{H}|\mathbb{P}, h^*, \mathrm{sample})$$

- A variant of Hanneke's disagreement coefficient (2007) for the realizable case
- \bullet Note: error according to hypothesis class $\mathcal H,$ but the disagreement region is from $\mathcal C$

The disagreement coefficient example

- Simple class that is useful for proving lower bounds
- SF_n := {{0}, {0,1}, {0,2}, ..., {0,n}}

The disagreement coefficient example

- Simple class that is useful for proving lower bounds
- SF_n := {{0}, {0,1}, {0,2}, ..., {0,n}}

The disagreement coefficient example

- Simple class that is useful for proving lower bounds
- SF_n := {{0}, {0,1}, {0,2}, ..., {0,n}}
- $\theta(\mathrm{SF}_n,\mathrm{SF}_n) = n$
 - Generally: $\theta(\mathcal{C}, \mathcal{C}) \leq |\mathcal{C}| 1$
 - Also $\theta(\mathrm{SF}_n, \mathrm{SF}_n) \ge n$:

Choose \mathbb{P} as uniform on $\{1, \ldots, n\}$ and sample $= h^* = \{0\}$ $\Rightarrow \theta(SF_n, SF_n | \mathbb{P}, h^*, sample) = \frac{1}{1/n} = n.$

The disagreement coefficient application in learning theory

Lemma:

For a sample size of

$$m = \widetilde{O}\left(\frac{\theta(\mathcal{C}, \mathcal{H}) \cdot \operatorname{VCdim}(\mathcal{H})}{\varepsilon}\right)$$

it holds with high probability that

 $\mathbb{P}\big(DIS(V_{\mathcal{C}})\big) \le \varepsilon$

- Make *H* more powerful ⇒
 θ decreases, but VCdim
 increases
- Proof: classic PAC bound for class *H*

RUB

Outline

- 1. Motivation and 'What is Co-Training?'
- 2. The disagreement coefficient
- 3. Label complexity bounds
- 4. Combinatorial bounds
- 5. Final Remarks

Back to Co-Training some notation

- Concept classes $\mathcal{C}_1, \mathcal{C}_2$, hypotheses classes $\mathcal{H}_1, \mathcal{H}_2$
- $d_i := \operatorname{VCdim}(\mathcal{H}_i)$
- $\theta_i := \theta(\mathcal{C}_i, \mathcal{H}_i)$
- $p_+ := \mathbb{P}(h^*(x) = "+")$
- $p_{-} := \mathbb{P}(h^{*}(x) = "-") = 1 p_{+}$
- $p_{min} := \min\{p_+, p_-\}, \ d_{max} := \max\{d_1, d_2\}, \ \dots$

Three resolution rules with upper bounds

- After seeing a labeled sample, the learner has to label a new instance (x_1, x_2) :
 - Safe decision, if $x_1 \notin DIS_1$ or $x_2 \notin DIS_2$
 - How should we label an instance in $\mathrm{DIS}_1 \times \mathrm{DIS}_2?$

Three resolution rules with upper bounds

- First fix some consistent $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2$
 - R1: If $h_1(x_1) = h_2(x_2)$ then output this label, otherwise choose the h_i that belongs to the class with higher θ
 - R2: Same as R1, but when in conflict output the label that occurred less often in the sample
 - R3: Output the label that occurred less often in the sample

Three resolution rules with upper bounds

- First fix some consistent $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2$
 - R1: If $h_1(x_1) = h_2(x_2)$ then output this label, otherwise choose the h_i that belongs to the class with higher θ
 - R2: Same as R1, but when in conflict output the label that occurred less often in the sample
 - R3: Output the label that occurred less often in the sample

Label complexity

$$\widetilde{O}\left(\sqrt{\frac{d_1d_2}{\varepsilon}\cdot\frac{\theta_{min}}{p_{min}}}\right)$$

$$\widetilde{O}\left(\sqrt{\frac{d_1d_2}{\varepsilon}} \cdot \max\left\{\frac{1}{p_{min}}, \theta_{max}\right\}}\right)$$

$$\widetilde{O}\left(\sqrt{\frac{d_1d_2}{\varepsilon}\cdot\theta_1\theta_2}\right)$$

- Learner has to estimate p_{min} by \hat{p}_{min}
- The upper bounds still hold

Proof only for rule 3

- WLOG $\hat{p}_{-} \geq 1/2$
- With high probability (after $\widetilde{O}(1)$ examples): $p_{-} \geq 1/4$
- R3: if $x_1 \in DIS_1$ and $x_2 \in DIS_2$ then output '+'
- If R3 makes an error on (x_1, x_2) , then $x_1 \in DIS_1$, $x_2 \in DIS_2$ and the true label is -

Proof only for rule 3

• With high probability:

$$\mathbb{P}(\text{error on } (x_1, x_2))$$

$$= \mathbb{P}(x_1 \in \text{DIS}_1, x_2 \in \text{DIS}_2 | -) p_-$$

$$= \mathbb{P}(x_1 \in \text{DIS}_1 | -) \cdot \mathbb{P}(x_2 \in \text{DIS}_2 | -) p_-$$

$$= \frac{1}{p_-} \cdot \mathbb{P}(x_1 \in \text{DIS}_1 | -) p_- \cdot \mathbb{P}(x_2 \in \text{DIS}_2 | -) p_-$$

$$\leq \underbrace{\frac{1}{p_-}}_{\leq 4} \cdot \underbrace{\mathbb{P}(x_1 \in \text{DIS}_1)}_{\leq \frac{1}{2}\sqrt{\frac{d_1}{d_2} \cdot \frac{1}{\theta_1 \theta_2} \cdot \varepsilon}} \underbrace{\mathbb{P}(x_2 \in \text{DIS}_2)}_{\leq \frac{1}{2}\sqrt{\frac{d_2}{d_1} \cdot \frac{1}{\theta_1 \theta_2} \cdot \varepsilon}} \leq \epsilon$$

`

m

Proof only for rule 3

Proof only for rule 3

- We have a 'witness class' for each upper bound
- The fiendish \mathbb{P} concentrates on the flower head $\{0\}$

Proof technique padding the VC dimension

- $\operatorname{VCdim}(\operatorname{SF}_n) = \operatorname{VCdim}(\operatorname{co}(\operatorname{SF}_n)) = 1$
- Get classes of arbitrary VC dimension by **padding**:
 - $\mathcal{C}^{[d]} := d$ -fold "disjoint unions" of \mathcal{C}
 - $-\operatorname{VCdim}(\mathcal{C}^{[d]}) = d \cdot \operatorname{VCdim}(\mathcal{C})$
 - Lemma: $\theta(\mathcal{C}^{[d]}, \mathcal{H}^{[d]}) = \theta(\mathcal{C}, \mathcal{H})$

RUB

Ω

department of mathematics and computer science research group | Malte Darnstädt

Proof technique padding the VC dimension

- $\operatorname{VCdim}(\operatorname{SF}_n) = \operatorname{VCdim}(\operatorname{co}(\operatorname{SF}_n)) = 1$
- Get classes of arbitrary VC dimension by **padding**:
 - $\ \mathcal{C}^{[d]} := d$ -fold "disjoint unions" of \mathcal{C}
 - $-\operatorname{VCdim}(\mathcal{C}^{[d]}) = d \cdot \operatorname{VCdim}(\mathcal{C})$
 - Lemma: $\theta(\mathcal{C}^{[d]}, \mathcal{H}^{[d]}) = \theta(\mathcal{C}, \mathcal{H})$

RUB

Outline

- 1. Motivation and 'What is Co-Training?'
- 2. The disagreement coefficient
- 3. Label complexity bounds
- 4. Combinatorial bounds
- 5. Final Remarks

Singleton Size definition

- $s^+(\mathcal{C}) :=$ size of the largest **singleton** sub-class in \mathcal{C}
- $s^-(\mathcal{C}) :=$ size of the largest **co-singleton** sub-class in \mathcal{C}
- $\mathcal{C}^+ :=$ all unions of concepts from \mathcal{C}
- $\mathcal{C}^- :=$ all intersections of concepts from \mathcal{C}

Singleton Size definition

- $s^+(\mathcal{C}) :=$ size of the largest **singleton** sub-class in \mathcal{C}
- $s^-(\mathcal{C}) :=$ size of the largest **co-singleton** sub-class in \mathcal{C}
- $\mathcal{C}^+ :=$ all unions of concepts from \mathcal{C}
- $\bullet \ \mathcal{C}^- :=$ all intersections of concepts from \mathcal{C}

$$\begin{split} \text{Singletons}_n &:= \big\{\{1\}, \{2\}, \dots, \{n\}\big\} \\ \text{co-Singletons}_n &:= \big\{\{2, 3, \dots, n\}, \{1, 3, \dots, n\}, \dots, \{1, 2, \dots, n-1\}\big\} \end{split}$$

Combinatorial upper bound

Theorem: For rule R3 and hypothesis classes $\mathcal{H}_{1,2} = \mathcal{C}_{1,2}^+ \cup \mathcal{C}_{1,2}^$ $m = \widetilde{O}(\sqrt{\max\{s_1^+s_2^+, s_1^-s_2^-\}}/\varepsilon)$ labeled examples are sufficient.

Combinatorial upper bound

Theorem: For rule R3 and hypothesis classes $\mathcal{H}_{1,2} = \mathcal{C}_{1,2}^+ \cup \mathcal{C}_{1,2}^$ $m = \widetilde{O}(\sqrt{\max\{s_1^+ s_2^+, s_1^- s_2^-\}}/\varepsilon)$ labeled examples are sufficient.

- Outputs the largest consistent hypothesis in C⁺_{1,2}
 or the smallest consistent hypothesis in C⁻_{1,2}
- Strong connection to "PAC-learnability from positive examples alone" by Geréb-Graus (1989)

Combinatorial lower bound

Theorem: Let $3 \leq s_{1,2}^+, s_{1,2}^- < \infty$ and let $\varepsilon > 0$ be sufficiently small, then $m = \widetilde{\Omega} \left(\sqrt{\max\{s_1^+ s_2^+, s_1^- s_2^-\}/\varepsilon} \right)$ labeled examples are necessary.

Combinatorial lower bound

Theorem: Let $3 \leq s_{1,2}^+, s_{1,2}^- < \infty$ and let $\varepsilon > 0$ be sufficiently small, then $m = \widetilde{\Omega} \left(\sqrt{\max\{s_1^+ s_2^+, s_1^- s_2^-\}/\varepsilon} \right)$ labeled examples are necessary.

- One can drop the restriction $3 \le s_{1,2}^+, s_{1,2}^-$ and still prove tight bounds
- Valid for $p_{min} = \varepsilon \leq 1/\max\{s_1^+s_2^+, s_1^-s_2^-\}$, i.e. p_{min} is small

RUB

Outline

- 1. Motivation and 'What is Co-Training?'
- 2. The disagreement coefficient
- 3. Label complexity bounds
- 4. Combinatorial bounds
- 5. Final Remarks

More results see the proceedings and upcoming journal version

- Sharper bounds for classes with one-sided errors
- Multiple views $x = (x_1, \ldots, x_k)$ lead to bounds like

$$m = \widetilde{O}\left(\sqrt[k]{\frac{d_1\theta_1\cdots d_k\theta_k}{\varepsilon}}\right)$$

• Negative result under the α -expanding assumption (weaker than conditional independence)

RUB

department of mathematics and computer science research group | Malte Darnstädt

Open questions and current work

• Bounds for infinite $s^-(\mathcal{C})$, $s^+(\mathcal{C})$?

- One can find classes with bounds like: $m = \widetilde{\Omega} \left(\sqrt{\frac{d_1 d_2}{\varepsilon}} + \frac{1}{\varepsilon} \right)$

• Can some of our techniques be applied to active learning?

RUB

department of mathematics and computer science research group | Malte Darnstädt

Thank you for your attention! -- end of talk --