SUPERVISED LEARNING AND CO-TRAINING

Malte Darnstädt, Hans Ulrich Simon and Balázs Szörényi Ruhr-University Bochum and University of Szeged

CONFERENCE ON ALGORITHMIC LEARNING THEORY 2011, ESPOO October 7, 2011

Outline

1. Motivation and 'What is Co-Training?'

2. The disagreement coefficient
3. Label complexity bounds
4. Combinatorial bounds
5. Final Remarks

Motivation
 Supervised vs. Semi Supervised Learning

\[

\]

Motivation
 Supervised vs. Semi Supervised Learning

Semi Supervised Learning:

- Additional unlabeled sample

- Conjecture by Ben-David, Lu and Pál:

Even for fixed \mathbb{P}, only saves a constant factor of labels

- For special classes and distributions: Ben-David et al (2008)
- For finite classes and 'most' distributions: Simon and D. (2011)

Co-Training with conditional independence by Blum and Mitchell (1998)

- Data points have two 'views': $x=\left(x_{1}, x_{2}\right), X=X_{1} \times X_{2}$
- Two target concepts: $h_{1}^{*} \in C_{1}, h_{2}^{*} \in C_{2}$
- Distribution \mathbb{P} over $X_{1} \times X_{2}$
- Perfectly compatible: $h_{1}^{*}\left(x_{1}\right)=h_{2}^{*}\left(x_{2}\right)$ with probability 1
- Conditional independence given the label:

$$
\begin{aligned}
& \mathbb{P}\left(x_{1}, x_{2} \mid+\right)=\mathbb{P}\left(x_{1} \mid+\right) \cdot \mathbb{P}\left(x_{2} \mid+\right) \\
& \mathbb{P}\left(x_{1}, x_{2} \mid-\right)=\mathbb{P}\left(x_{1} \mid-\right) \cdot \mathbb{P}\left(x_{2} \mid-\right)
\end{aligned}
$$

Co-Training with conditional independence by Blum and Mitchell (1998)

- Balcan and Blum (2010) give a Semi Supervised algorithm that learns with just one labeled example!
- Power of unlabeled data?

Co-Training with conditional independence by Blum and Mitchell (1998)

- Balcan and Blum (2010) give a Semi Supervised algorithm that learns with just one labeled example!
- Power of unlabeled data?

Semi Supervised
Co-Training
Supervised

Co-Training with conditional independence by Blum and Mitchell (1998)

- Balcan and Blum (2010) give a Semi Supervised algorithm that learns with just one labeled example!
- Power of unlabeled data?

Semi Supervised
Co-Training

Supervised
Co-Training

Outline

1. Motivation and 'What is Co-Training?'
2. The disagreement coefficient
3. Label complexity bounds
4. Combinatorial bounds
5. Final Remarks

The disagreement region definition

$$
\begin{aligned}
& \operatorname{DIS}(V):=\left\{x \in X \mid \exists h, h^{\prime} \in V: h(x) \neq h^{\prime}(x)\right\} \\
& \text { for any subset } V \subseteq \mathcal{C} \text { (usually a version space) }
\end{aligned}
$$

The disagreement region definition

$$
\begin{aligned}
& \operatorname{DIS}(V):=\left\{x \in X \mid \exists h, h^{\prime} \in V: h(x) \neq h^{\prime}(x)\right\} \\
& \text { for any subset } V \subseteq \mathcal{C} \text { (usually a version space) }
\end{aligned}
$$

The disagreement coefficient definition

$$
\begin{aligned}
\theta\left(\mathcal{C}, \mathcal{H} \mid \mathbb{P}, h^{*}, \text { sample }\right) & :=\frac{\mathbb{P}\left(\operatorname{DIS}\left(V_{\mathcal{C}}\right)\right)}{\sup _{h \in V_{\mathcal{H}}} \mathbb{P}\left(h(x) \neq h^{*}(x)\right)} \\
\theta(\mathcal{C}, \mathcal{H}) & :=\sup _{\mathbb{P}, h^{*}, \text { sample }} \theta\left(\mathcal{C}, \mathcal{H} \mid \mathbb{P}, h^{*}, \text { sample }\right)
\end{aligned}
$$

The disagreement coefficient definition

$$
\begin{aligned}
\theta\left(\mathcal{C}, \mathcal{H} \mid \mathbb{P}, h^{*}, \text { sample }\right) & :=\frac{\mathbb{P}\left(\operatorname{DIS}\left(V_{\mathcal{C}}\right)\right)}{\sup _{h \in V_{\mathcal{H}}} \mathbb{P}\left(h(x) \neq h^{*}(x)\right)} \\
\theta(\mathcal{C}, \mathcal{H}) & :=\sup _{\mathbb{P}, h^{*}, \text { sample }} \theta\left(\mathcal{C}, \mathcal{H} \mid \mathbb{P}, h^{*}, \text { sample }\right)
\end{aligned}
$$

The disagreement coefficient definition

$$
\begin{aligned}
\theta\left(\mathcal{C}, \mathcal{H} \mid \mathbb{P}, h^{*}, \text { sample }\right) & :=\frac{\mathbb{P}\left(\operatorname{DIS}\left(V_{\mathcal{C}}\right)\right)}{\sup _{h \in V_{\mathcal{H}}} \mathbb{P}\left(h(x) \neq h^{*}(x)\right)} \\
\theta(\mathcal{C}, \mathcal{H}) & :=\sup _{\mathbb{P}, h^{*}, \text { sample }} \theta\left(\mathcal{C}, \mathcal{H} \mid \mathbb{P}, h^{*}, \text { sample }\right)
\end{aligned}
$$

- A variant of Hanneke's disagreement coefficient (2007) for the realizable case
- Note: error according to hypothesis class \mathcal{H}, but the disagreement region is from \mathcal{C}

The disagreement coefficient example

$$
h^{*}=\{0,1\}
$$

- Simple class that is useful for proving lower bounds
- $\mathrm{SF}_{n}:=\{\{0\},\{0,1\},\{0,2\}, \ldots,\{0, n\}\}$

The disagreement coefficient example

$$
h^{*}=\{0\}
$$

- Simple class that is useful for proving lower bounds
- $\mathrm{SF}_{n}:=\{\{0\},\{0,1\},\{0,2\}, \ldots,\{0, n\}\}$

The disagreement coefficient example

$$
h^{*}=\{0\}
$$

- Simple class that is useful for proving lower bounds
- $\mathrm{SF}_{n}:=\{\{0\},\{0,1\},\{0,2\}, \ldots,\{0, n\}\}$
- $\theta\left(\mathrm{SF}_{n}, \mathrm{SF}_{n}\right)=n$
- Generally: $\theta(\mathcal{C}, \mathcal{C}) \leq|\mathcal{C}|-1$
- Also $\theta\left(\mathrm{SF}_{n}, \mathrm{SF}_{n}\right) \geq n$:

Choose \mathbb{P} as uniform on $\{1, \ldots, n\}$ and sample $=h^{*}=\{0\}$ $\Rightarrow \theta\left(\mathrm{SF}_{n}, \mathrm{SF}_{n} \mid \mathbb{P}, h^{*}\right.$, sample $)=\frac{1}{1 / n}=n$.

The disagreement coefficient application in learning theory

Lemma:

For a sample size of

$$
m=\widetilde{O}\left(\frac{\theta(\mathcal{C}, \mathcal{H}) \cdot \operatorname{VCdim}(\mathcal{H})}{\varepsilon}\right)
$$

it holds with high probability that

- Make \mathcal{H} more powerful \Rightarrow θ decreases, but VCdim increases
- Proof: classic PAC bound for class \mathcal{H}

$$
\mathbb{P}\left(D I S\left(V_{\mathcal{C}}\right)\right) \leq \varepsilon
$$

Outline

1. Motivation and 'What is Co-Training?'
2. The disagreement coefficient
3. Label complexity bounds
4. Combinatorial bounds
5. Final Remarks

Back to Co-Training some notation

- Concept classes $\mathcal{C}_{1}, \mathcal{C}_{2}$, hypotheses classes $\mathcal{H}_{1}, \mathcal{H}_{2}$
- $d_{i}:=\operatorname{VCdim}\left(\mathcal{H}_{i}\right)$
- $\theta_{i}:=\theta\left(\mathcal{C}_{i}, \mathcal{H}_{i}\right)$
- $p_{+}:=\mathbb{P}\left(h^{*}(x)="+"\right)$
- $p_{-}:=\mathbb{P}\left(h^{*}(x)={ }^{"}-"\right)=1-p_{+}$
- $p_{\text {min }}:=\min \left\{p_{+}, p_{-}\right\}, d_{\max }:=\max \left\{d_{1}, d_{2}\right\}, \ldots$

Three resolution rules with upper bounds

- After seeing a labeled sample, the learner has to label a new instance (x_{1}, x_{2}):
- Safe decision, if $x_{1} \notin \mathrm{DIS}_{1}$ or $x_{2} \notin \mathrm{DIS}_{2}$
- How should we label an instance in $\mathrm{DIS}_{1} \times \mathrm{DIS}_{2}$?

Three resolution rules with upper bounds

- First fix some consistent $h_{1} \in \mathcal{H}_{1}, h_{2} \in \mathcal{H}_{2}$

R1: If $h_{1}\left(x_{1}\right)=h_{2}\left(x_{2}\right)$ then output this label, otherwise choose the h_{i} that belongs to the class with higher θ
R2: Same as R1, but when in conflict output the label that occurred less often in the sample
R3: Output the label that occurred less often in the sample

Three resolution rules with upper bounds

- First fix some consistent $h_{1} \in \mathcal{H}_{1}, h_{2} \in \mathcal{H}_{2}$

R1: If $h_{1}\left(x_{1}\right)=h_{2}\left(x_{2}\right)$ then output this label, otherwise choose the h_{i} that belongs to the class with higher θ

Label complexity

$$
\begin{gathered}
\widetilde{O}\left(\sqrt{\frac{d_{1} d_{2}}{\varepsilon} \cdot \frac{\theta_{\min }}{p_{\min }}}\right) \\
\widetilde{O}\left(\sqrt{\frac{d_{1} d_{2}}{\varepsilon} \cdot \max \left\{\frac{1}{p_{\min }}, \theta_{\max }\right\}}\right) \\
\widetilde{O}\left(\sqrt{\frac{d_{1} d_{2}}{\varepsilon} \cdot \theta_{1} \theta_{2}}\right)
\end{gathered}
$$

The combined rule a general upper bound

- Learner has to estimate $p_{\text {min }}$ by $\hat{p}_{\text {min }}$

$$
\begin{aligned}
& \frac{\theta_{\min }}{p_{\min }} \\
& m=\widetilde{O}\left(\sqrt{\frac{d_{1} d_{2}}{\varepsilon} \cdot F}\right)
\end{aligned}
$$

- The upper bounds still hold

Proof only for rule 3

- WLOG $\hat{p}_{-} \geq 1 / 2$
- With high probability (after $\widetilde{O}(1)$ examples): $p_{-} \geq 1 / 4$
- R3: if $x_{1} \in \mathrm{DIS}_{1}$ and $x_{2} \in \mathrm{DIS}_{2}$ then output ' + '
- If R3 makes an error on $\left(x_{1}, x_{2}\right)$, then $x_{1} \in \mathrm{DIS}_{1}, x_{2} \in \mathrm{DIS}_{2}$ and the true label is -

Proof

only for rule 3

- With high probability: $\mathbb{P}\left(\right.$ error on $\left.\left(x_{1}, x_{2}\right)\right)$

$$
\begin{aligned}
& =\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1}, x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-} \\
& =\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1} \mid-\right) \cdot \mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-} \\
& =\frac{1}{p_{-}} \cdot \mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1} \mid-\right) p_{-} \cdot \mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-} \\
& \leq \underbrace{\frac{1}{p_{-}}}_{\leq 4} \cdot \underbrace{\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1}\right)}_{\leq \frac{1}{2} \sqrt{\frac{d_{1}}{d_{2}} \cdot \frac{1}{\theta_{1} \theta_{2}} \cdot \varepsilon}} \cdot \underbrace{\mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2}\right)}_{\leq \frac{1}{2} \sqrt{\frac{d_{2}}{d_{1}} \cdot \frac{1}{\theta_{1} \theta_{2}} \cdot \varepsilon}} \leq \epsilon
\end{aligned}
$$

Proof

only for rule 3

- With high probability: $\mathbb{P}\left(\right.$ error on $\left.\left(x_{1}, x_{2}\right)\right)$

$$
\begin{aligned}
& =\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1}, x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-} \\
\begin{array}{c}
\text { conditional } \\
\text { independence }
\end{array} & =\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1} \mid-\right) \cdot \mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-} \\
& =\frac{1}{p_{-}} \cdot \mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1} \mid-\right) p_{-} \cdot \mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-} \\
& \leq \underbrace{\frac{1}{p_{-}}}_{\leq 4} \cdot \underbrace{\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1}\right)}_{\leq \frac{1}{2} \sqrt{\frac{d_{1}}{d_{2}} \cdot \frac{1}{\theta_{1} \theta_{2}} \cdot \varepsilon}} \cdot \underbrace{\mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2}\right)}_{\leq \frac{1}{2} \sqrt{\frac{d_{2}}{d_{1}} \cdot \frac{1}{\theta_{1} \theta_{2}} \cdot \varepsilon}} \leq \epsilon
\end{aligned}
$$

Proof

only for rule 3

- With high probability: $\mathbb{P}\left(\right.$ error on $\left.\left(x_{1}, x_{2}\right)\right)$

$$
=\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1}, x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-}
$$

$\begin{gathered}\text { conditional } \\ \text { independence }\end{gathered} \longrightarrow=\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1} \mid-\right) \cdot \mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-}$
independence $\quad=\frac{1}{p_{-}} \cdot \mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1} \mid-\right) p_{-} \cdot \mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2} \mid-\right) p_{-}$

$$
\leq \underbrace{\frac{1}{p_{-}}}_{\leq 4} \cdot \underbrace{\mathbb{P}\left(x_{1} \in \mathrm{DIS}_{1}\right)}_{\leq \frac{1}{2} \sqrt{\frac{d_{1}}{d_{2}} \cdot \frac{1}{\theta_{1} \theta_{2}} \cdot \varepsilon}} \cdot \underbrace{\mathbb{P}\left(x_{2} \in \mathrm{DIS}_{2}\right)}_{\leq \frac{1}{2} \sqrt{\frac{d_{2}}{d_{1}} \cdot \frac{1}{\theta_{1} \theta_{2}} \cdot \varepsilon}} \leq \epsilon
$$

and the earlier lemma
department of mathematics and computer science
research group | Malte Darnstädt

Lower bounds for special classes

- We have a 'witness class' for each upper bound

$$
m=\widetilde{\Omega}\left(\sqrt{\frac{d_{1} d_{2}}{\varepsilon} \cdot F}\right)
$$

- The fiendish \mathbb{P} concentrates on the flower head $\{0\}$

Proof technique padding the VC dimension

- $\operatorname{VCdim}\left(\mathrm{SF}_{n}\right)=\operatorname{VCdim}\left(\operatorname{co}\left(\mathrm{SF}_{n}\right)\right)=1$
- Get classes of arbitrary VC dimension by padding:
$-\mathcal{C}^{[d]}:=d$-fold "disjoint unions" of \mathcal{C}
$-\operatorname{VCdim}\left(\mathcal{C}^{[d]}\right)=d \cdot \operatorname{VCdim}(\mathcal{C})$
- Lemma: $\theta\left(\mathcal{C}^{[d]}, \mathcal{H}^{[d]}\right)=\theta(\mathcal{C}, \mathcal{H})$

Proof technique padding the VC dimension

- $\operatorname{VCdim}\left(\mathrm{SF}_{n}\right)=\operatorname{VCdim}\left(\operatorname{co}\left(\mathrm{SF}_{n}\right)\right)=1$
- Get classes of arbitrary VC dimension by padding:
$-\mathcal{C}^{[d]}:=d$-fold "disjoint unions" of \mathcal{C}

$-\operatorname{VCdim}\left(\mathcal{C}^{[d]}\right)=d \cdot \operatorname{VCdim}(\mathcal{C})$
- Lemma: $\theta\left(\mathcal{C}^{[d]}, \mathcal{H}^{[d]}\right)=\theta(\mathcal{C}, \mathcal{H})$

Outline

1. Motivation and 'What is Co-Training?'
2. The disagreement coefficient
3. Label complexity bounds

4. Combinatorial bounds

5. Final Remarks

Singleton Size definition

- $s^{+}(\mathcal{C}):=$ size of the largest singleton sub-class in \mathcal{C}
- $s^{-}(\mathcal{C}):=$ size of the largest co-singleton sub-class in \mathcal{C}
- $\mathcal{C}^{+}:=$all unions of concepts from \mathcal{C}
- $\mathcal{C}^{-}:=$all intersections of concepts from \mathcal{C}

Singleton Size definition

- $s^{+}(\mathcal{C}):=$ size of the largest singleton sub-class in \mathcal{C}
- $s^{-}(\mathcal{C}):=$ size of the largest co-singleton sub-class in \mathcal{C}
- $\mathcal{C}^{+}:=$all unions of concepts from \mathcal{C}
- $\mathcal{C}^{-}:=$all intersections of concepts from \mathcal{C}

$$
\begin{aligned}
\text { Singletons }_{n} & :=\{\{1\},\{2\}, \ldots,\{n\}\} \\
\text { co-Singletons }_{n} & :=\{\{2,3, \ldots, n\},\{1,3, \ldots, n\}, \ldots,\{1,2, \ldots, n-1\}\}
\end{aligned}
$$

Combinatorial upper bound

Theorem:

For rule R3 and hypothesis classes $\mathcal{H}_{1,2}=\mathcal{C}_{1,2}^{+} \cup \mathcal{C}_{1,2}^{-}$
$m=\widetilde{O}\left(\sqrt{\max \left\{s_{1}^{+} s_{2}^{+}, s_{1}^{-} s_{2}^{-}\right\} / \varepsilon}\right)$ labeled examples are sufficient.

Combinatorial upper bound

Theorem:

For rule R3 and hypothesis classes $\mathcal{H}_{1,2}=\mathcal{C}_{1,2}^{+} \cup \mathcal{C}_{1,2}^{-}$
$m=\widetilde{O}\left(\sqrt{\max \left\{s_{1}^{+} s_{2}^{+}, s_{1}^{-} s_{2}^{-}\right\} / \varepsilon}\right)$ labeled examples are sufficient.

- Outputs the largest consistent hypothesis in $\mathcal{C}_{1,2}^{+}$ or the smallest consistent hypothesis in $\mathcal{C}_{1,2}^{-}$
- Strong connection to "PAC-learnability from positive examples alone" by Geréb-Graus (1989)

Combinatorial lower bound

Theorem:

Let $3 \leq s_{1,2}^{+}, s_{1,2}^{-}<\infty$ and let $\varepsilon>0$ be sufficiently small, then $m=\widetilde{\Omega}\left(\sqrt{\max \left\{s_{1}^{+} s_{2}^{+}, s_{1}^{-} s_{2}^{-}\right\} / \varepsilon}\right)$ labeled examples are necessary.

Combinatorial lower bound

Theorem:

Let $3 \leq s_{1,2}^{+}, s_{1,2}^{-}<\infty$ and let $\varepsilon>0$ be sufficiently small, then
$m=\widetilde{\Omega}\left(\sqrt{\max \left\{s_{1}^{+} s_{2}^{+}, s_{1}^{-} s_{2}^{-}\right\} / \varepsilon}\right)$ labeled examples are necessary.

- One can drop the restriction $3 \leq s_{1,2}^{+}, s_{1,2}^{-}$and still prove tight bounds
- Valid for $p_{\text {min }}=\varepsilon \leq 1 / \max \left\{s_{1}^{+} s_{2}^{+}, s_{1}^{-} s_{2}^{-}\right\}$, i.e. $p_{\text {min }}$ is small

Outline

1. Motivation and 'What is Co-Training?'
2. The disagreement coefficient
3. Label complexity bounds
4. Combinatorial bounds
5. Final Remarks

More results see the proceedings and upcoming journal version

- Sharper bounds for classes with one-sided errors
- Multiple views $x=\left(x_{1}, \ldots, x_{k}\right)$ lead to bounds like

$$
m=\widetilde{O}\left(\sqrt[k]{\frac{d_{1} \theta_{1} \cdots d_{k} \theta_{k}}{\varepsilon}}\right)
$$

- Negative result under the α-expanding assumption (weaker than conditional independence)

Open questions and current work

- Bounds for infinite $s^{-}(\mathcal{C}), s^{+}(\mathcal{C})$?
- One can find classes with bounds like: $m=\widetilde{\Omega}\left(\sqrt{\frac{d_{1} d_{2}}{\varepsilon}}+\frac{1}{\varepsilon}\right)$
- Can some of our techniques be applied to active learning?

Thank you for your attention! -- end of talk --

