ORDER COMPRESSION SCHEMES

Malte Darnstädt, Thorsten Doliwa, Hans Ulrich Simon and Sandra Zilles **Ruhr-University Bochum and University of Regina**

24th International Conference on Algorithmic Learning Theory, Singapore October 8, 2013

Outline

- 1 Sample compression schemes
- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

Outline

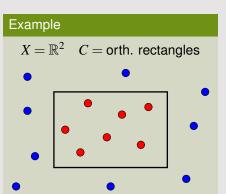
1 Sample compression schemes

- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

Binary concept class C over an instance space X

$$X = \mathbb{R}^2$$
 $C =$ orth. rectangles

- Binary concept class C over an instance space X
- Finite sample S labeled by some concept c ∈ C



- Binary concept class C over an instance space X
- Finite sample S labeled by some concept c ∈ C
- Compression function f $f(S) \subseteq S$

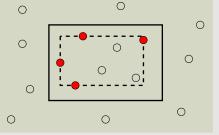
Example

$$X = \mathbb{R}^2$$
 $C =$ orth. rectangles

 \cap

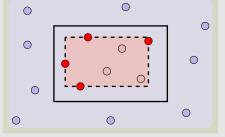
- Binary concept class C over an instance space X
- Finite sample S labeled by some concept c ∈ C
- Compression function f $f(S) \subseteq S$
- Reconstruction function g

$$X = \mathbb{R}^2$$
 $C =$ orth. rectangles



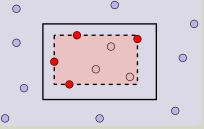
- Binary concept class C over an instance space X
- Finite sample *S* labeled by some concept *c* ∈ *C*
- Compression function f $f(S) \subseteq S$
- Reconstruction function g g(f(S)) consistent with S

$$X = \mathbb{R}^2$$
 $C =$ orth. rectangles



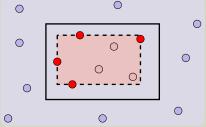
- Binary concept class C over an instance space X
- Finite sample *S* labeled by some concept *c* ∈ *C*
- Compression function f $f(S) \subseteq S$
- Reconstruction function g g(f(S)) consistent with S
- Hypothesis class HA scheme is called *proper* iff H = C

$$X = \mathbb{R}^2$$
 $C =$ orth. rectangles



- Binary concept class C over an instance space X
- Finite sample *S* labeled by some concept $c \in C$
- Compression function f $f(S) \subseteq S$
- Reconstruction function g g(f(S)) consistent with S
- Hypothesis class HA scheme is called *proper* iff H = C
- Size k: cardinality of the largest compression set f(S)

$$X = \mathbb{R}^2$$
 $C =$ orth. rectangles



Previous results [Floyd, Warmuth '95]

Learnability

If *C* has a compression scheme of size k then *C* is PAC-learnable with a sample size of

$$O\left(\frac{k \cdot \log(1/\varepsilon) + \log(1/\delta)}{\varepsilon}\right)$$

Previous results [Floyd, Warmuth '95]

General lower bound

For any compression scheme for C holds

 $k \geq \mathrm{VCD}(C)/5$

Upper bounds for special classes

Let C be a maximum or intersection-closed class. Then there exists a compression scheme of size

k = VCD(C)

The sample compression conjecture

Conjecture [Floyd, Warmuth '95; Warmuth '03]

For all C exists a compression scheme of size

 $k \leq \text{VCD}(C)$

- We don't even know if k = O(VCD(C))
- Sufficient to prove the conjecture for finite classes [Ben-David, Litman '98]

Outline

- 1 Sample compression schemes
- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

- Special case of compression schemes
- Less powerful, but easier to analyze
- Most finite classes C for which the conjecture is proven also have an Order Compression Scheme of size VCD(C)
- A stepping stone for proving or disproving the conjecture

RUB

Teaching set

S is a *teaching set* for *c* with respect to *C*

 $:\Leftrightarrow c$ is the only concept in *C* that is consistent with *S*

Teaching set

S is a *teaching set* for c with respect to C

 $:\Leftrightarrow c$ is the only concept in *C* that is consistent with *S*

Order Compression Scheme (OCS)

Let *C* be a finite concept class and $H \supseteq C$ a finite hypothesis class. Equip *H* with a total order, say (h_1, h_2, \ldots, h_m) .

Teaching set

S is a *teaching set* for *c* with respect to *C*

 $:\Leftrightarrow c$ is the only concept in *C* that is consistent with *S*

Order Compression Scheme (OCS)

Let *C* be a finite concept class and $H \supseteq C$ a finite hypothesis class. Equip *H* with a total order, say (h_1, h_2, \ldots, h_m) .

1 Compression of *S*:

Let *t* be the largest number such that h_t is consistent with *S*. Then f(S) is a smallest subset of *S* that is a teaching set for h_t with respect to $\{h_t, \ldots, h_m\}$.

Teaching set

S is a *teaching set* for *c* with respect to *C*

 $:\Leftrightarrow c$ is the only concept in *C* that is consistent with *S*

Order Compression Scheme (OCS)

Let *C* be a finite concept class and $H \supseteq C$ a finite hypothesis class. Equip *H* with a total order, say (h_1, h_2, \ldots, h_m) .

1 Compression of S:

Let *t* be the largest number such that h_t is consistent with *S*. Then f(S) is a smallest subset of *S* that is a teaching set for h_t with respect to $\{h_t, \ldots, h_m\}$.

Reconstruction of f(S):
Let t be the largest number such that h_t is consistent with f(S).
Then g(f(S)) = h_t.

Example: the class of singletons

Example: the class of singletons

Let
$$X = \{x_1, ..., x_n\}$$
 and $C_s = \{c_1, ..., c_n\}$.

OCS with $H = C_s$

W.l.o.g. let the ordering be (c_1, c_2, \ldots, c_n) .

If S contains a 1-labeled point it is compressed to this single point.

But $S = \{(x_2, 0), (x_3, 0), \dots, (x_n, 0)\}$ is a teaching set for c_1 in H and no proper subset of S has this property.

 \Rightarrow The size of any proper OCS is n-1.

Example: the class of singletons

Let
$$X = \{x_1, ..., x_n\}$$
 and $C_s = \{c_1, ..., c_n\}$.

OCS with $H = C_s \cup \{ all - 0 \}$

Use the ordering $(c_1, c_2, \ldots, c_n, \text{all-0})$.

If *S* contains a 1-labeled point it is compressed to this single point; otherwise to the empty set.

 \Rightarrow The size of this improper OCS is 1.

Note: The all-zero hypothesis *must* be last (or second-last) in the ordering.

Example: the class of singletons

Let
$$X = \{x_1, ..., x_n\}$$
 and $C_s = \{c_1, ..., c_n\}$.

Contrast: general proper scheme of size 1

If *S* contains a 1-labeled point it is compressed to this single point; otherwise to a point $(x_i, 0)$ such that x_{i+1} is not in *S*. Reconstruction works in the obvious way.

E.g.
$$S = \{(x_1, 0), (x_2, 0), (x_4, 0)\}$$
 $f(S) = \{(x_2, 0)\}$ $g(f(S)) = c_3$

 \Rightarrow The size of this compression scheme is 1.

The Order Compression Number

Order Compression Number			
OCN(C) :=	$\min_{H \supseteq C}$	min order of <i>H</i>	size the OCS using H for C

The Order Compression Number

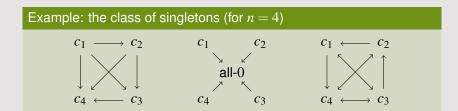
Order Compression Number			
OCN(C) :=	$\min_{H \supseteq C}$	min order of <i>H</i>	size the OCS using H for C
Monotonicity			
For all $C' \subseteq C$ and $X' \subseteq X$ holds			
$\operatorname{OCN}(C) \ge \operatorname{OCN}(C')$			
$\operatorname{OCN}(C) \ge \operatorname{OCN}(C_{ X'})$			

Outline

- 1 Sample compression schemes
- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

The compression graph

- A general tool for sample compression schemes
- Especially useful for Order Compression Schemes



Compression graph for a scheme (f,g)

Define G(f,g) := (V,E), where

1 V is the set of hypotheses H

2 $(h_1, h_2) \in E$ iff there exists a sample *S* labeled by some $c \in C$, s.t. both h_1 and h_2 are consistent with f(S) and $g(f(S)) = h_2$

Acyclic Compression Schemes

Theorem

G(f,g) is acyclic $\iff (f,g)$ is an Order Compression Scheme

- **Topological ordering of** $G(f,g) \longleftrightarrow$ total order of H
- Technicality: normalization of f necessary
- E.g. the compression scheme for rectangles is an OCS (for finite C)

Outline

- 1 Sample compression schemes
- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

Teaching [Goldman, Kearns '95; Shinohara, Miyano '91]

Teaching

Sample Compression

Teaching [Goldman, Kearns '95; Shinohara, Miyano '91]

Teaching		Sample Compression
concept class C	\longleftrightarrow	concept class C
teacher	\longleftrightarrow	compression function

Teaching [Goldman, Kearns '95; Shinohara, Miyano '91]

Teaching	Sample Compression	
concept class C	\longleftrightarrow	concept class C
teacher	\longleftrightarrow	compression function
all elements of X labeled	<	subsets of X labeled

Teaching [Goldman, Kearns '95; Shinohara, Miyano '91]

Teaching		Sample Compression
concept class C	\longleftrightarrow	concept class C
teacher	\longleftrightarrow	compression function
all elements of X labeled	<	subsets of X labeled
learner	\longleftrightarrow	reconstruction function

Teaching [Goldman, Kearns '95; Shinohara, Miyano '91]

Teaching		
\longleftrightarrow	concept class C	
\longleftrightarrow	compression function	
<	subsets of X labeled	
\longleftrightarrow	reconstruction function	
>	relies heavily on such tricks	
	$\begin{array}{c} \longleftrightarrow \\ \leftarrow \\ \leftarrow \\ \leftarrow \\ \bullet \\ \bullet \end{array}$	

Teaching [Goldman, Kearns '95; Shinohara, Miyano '91]

Teaching		Sample Compression
concept class C	\longleftrightarrow	concept class C
teacher	\longleftrightarrow	compression function
all elements of X labeled	<	subsets of X labeled
learner	\longleftrightarrow	reconstruction function
no "coding tricks"	>	relies heavily on such tricks
↑ relax this requirement		

Recursive teaching [Zilles et al. '08; Doliwa et al. '10]

Teaching plan

A *teaching plan* for $C = \{c_1, \ldots, c_m\}$ is a sequence

$$((c_1,S_1),(c_2,S_2),\ldots,(c_m,S_m))$$

such that S_i is a teaching set for c_i in $\{c_i, \ldots, c_m\}$.

The order of a teaching plan is the cardinality of the largest S_i .

Recursive Teaching Dimension

 $\begin{array}{lll} \operatorname{RTD}(C) & := & \operatorname{minimum order over all teaching plans of } C \\ \operatorname{RTD}^*(C) & := & \max_{X' \subset X} \operatorname{RTD}(C_{|X'}) \end{array}$

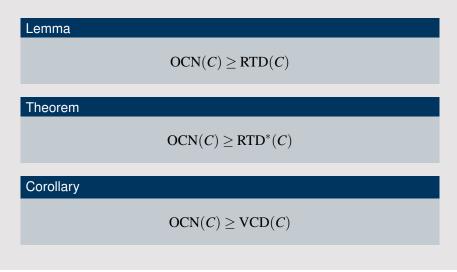
Implications for OCN

Lemma

$\mathrm{OCN}(C) \geq \mathrm{RTD}(C)$

Implications for OCN

Implications for OCN



ORDER COMPRESSION SCHEMES

ALT 2013 | Darnstädt, Doliwa, Simon, Zilles



- Found by Manfred Warmuth
- The smallest class with the property RTD(*C*) > VCD(*C*) [Doliwa et al. '10]
- Padding yields classes of arbitrary high VC dimension with $OCN(C) = 3/2 \cdot VCD(C)$
- *C_{MW}* has a *cyclic* compression scheme of size 2

Outline

- 1 Sample compression schemes
- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

Results for special classes

Theorem

For intersection-closed or maximum classes C holds

OCN(C) = VCD(C)

Check the compression graph of known compression schemes!

Results for special classes

Theorem

For intersection-closed or maximum classes C holds

OCN(C) = VCD(C)

Check the compression graph of known compression schemes!

- For intersection-closed classes: the standard scheme, using spanning sets [Floyd, Warmuth '95]
- For maximum classes: based on the Tail Matching Algorithm [Kuzmin, Warmuth '07]

Corollaries

Using results by [Ben-David, Litman '98] and [Welzl, Wöginger '87] we get immediately:

Corollary

For Dudley classes and classes of VC dimension 1 holds:

OCN(C) = VCD(C)

In the paper: also a result for nested differences of intersection-closed classes

Outline

- 1 Sample compression schemes
- 2 Order Compression Schemes
- 3 Compression graphs
- 4 Connections to teaching
- 5 Results for special classes
- 6 Open questions

Open questions

- How do OCN and VCD relate in general?
- How can one find the optimal hypothesis space *H* for a given class *C*?
- How can one find the optimal ordering of *H*?

RUB

Thank you!

Do you have any questions?

RUB