RUB

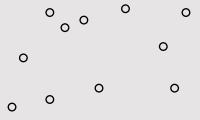
UNLABELED DATA DOES PROVABLY HELP

<u>Malte Darnstädt</u>, Hans Ulrich Simon and Balázs Szörényi **Ruhr-University Bochum and University of Szeged**

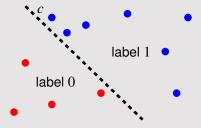
30TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, KIEL February 28, 2013

Outline

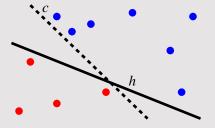
- 2 Semi supervised learning
- 3 Where unlabeled data doesn't help
- 4 Where unlabeled data does help



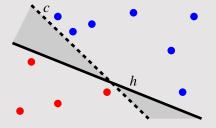
- Instance space *X* with distribution *P*
- m sample points drawn according to P



- Concept class: $C \subseteq \{c \mid c : X \to \{0, 1\}\}$
- Target concept: $c \in C$
- the sample is labeled by c

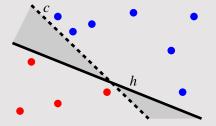


- Hypothesis class: $H \supseteq C$
- Learning algorithm designed for *C* Input: the labeled sample, Output: a hypothesis $h \in H$



- Hypothesis class: $H \supseteq C$
- Learning algorithm designed for CInput: the labeled sample, Output: a hypothesis $h \in H$

A theory of the learnable [Valiant 1984]



The learner **PAC-learns** the class *C* if for all ε , $\delta > 0$ and large enough *m*:

$$P_{\mathsf{sample}}ig(P_x(h(x)
eq c(x))\leq oldsymbol{arepsilon}ig)\geq 1-oldsymbol{\delta}$$

A well known sample size bound

Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth 1987)

Any finite class C is PAC-learnable from

$$m_{C,P}(\varepsilon, \delta) = O\Big(\frac{\log(|C|) + \log(1/\delta)}{\varepsilon}\Big)$$

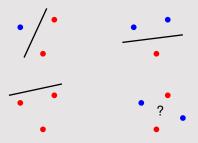
many labeled sample points under any distribution *P*. The learner may output any concept from *C* which is consistent with the sample.

The VC dimension

- Measure of the **capacity** of a class *C*
- Shattering set: points from X that can be labeled arbitrarily by concepts from C
- The VC dimension of C is the size of the largest shattering set (or infinite if no such set exists)

The VC dimension – example

Class of half spaces: three points can be shattered



A second well known sample size bound

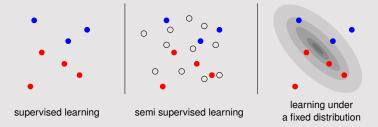
Theorem (Blumer, Ehrenfeucht, Haussler, Warmuth 1989)

A class C with finite VC-dimension d is PAC-learnable from

$$m_{C,P}(\varepsilon, \delta) = O\left(\frac{d \cdot \log(1/\varepsilon) + \log(1/\delta)}{\varepsilon}\right)$$

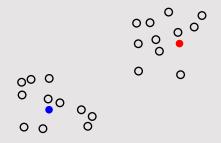
many labeled sample points under any distribution *P*. The learner may output any concept from *C* which is consistent with the sample.

Using unlabeled data



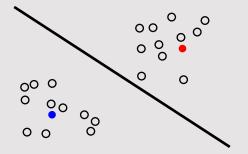
Learning becomes easier when additional unlabeled data is available. How much can we reduce the need for labels?

With an extra assumption



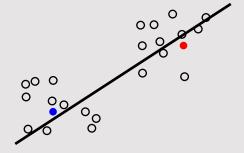
Usually used together with an **extra assumption**, that connects the data distribution with the target concept. The number of needed labels can be reduced dramatically [e.g. Balcan, Blum 2010; Darnstädt, Simon, Szörényi 2011].

With an extra assumption



Usually used together with an **extra assumption**, that connects the data distribution with the target concept. The number of needed labels can be reduced dramatically [e.g. Balcan, Blum 2010; Darnstädt, Simon, Szörényi 2011].

With an extra assumption



Usually used together with an **extra assumption**, that connects the data distribution with the target concept. The number of needed labels can be reduced dramatically [e.g. Balcan, Blum 2010; Darnstädt, Simon, Szörényi 2011].

Without extra assumptions?

Conjecture by Ben-David, Lu and Pál 2008: Learning under a fixed distribution without extra assumptions can only save a **constant factor** of labels.

- Proven for some special concept classes over the real line
- Similar result by Darnstädt and Simon 2011: Proven for finite classes and "most" pairs of target concepts and data distributions

Without extra assumptions?

Conjecture by Ben-David, Lu and Pál 2008: Learning under a fixed distribution without extra assumptions can only save a **constant factor** of labels.

- Proven for some special concept classes over the real line
- Similar result by Darnstädt and Simon 2011: Proven for finite classes and "most" pairs of target concepts and data distributions

Today

The conjecture is false.

Where unlabeled data doesn't help

Theorem (1)

Let C contain the all-one and all-zero function.

1 If C is finite, then for all P:

 $\frac{\textit{supervised}}{\textit{fixed distribution}} \frac{m_{C,P}(2\varepsilon, \delta)}{m_{C,P}(\varepsilon, \delta)} = O(\log(|C|))$

2 If the VC dimension d of C is finite, then for all P:

 $\frac{\text{supervised} \quad m_{C,P}(2\varepsilon, \delta)}{\text{fixed distribution} \quad m_{C,P}(\varepsilon, \delta)} = O(d \cdot \log(1/\varepsilon))$

Proof idea

Compare

- a lower bound on the number of needed labels for any fixed distribution learner
- with an upper bound for a specially designed supervised learner

Where unlabeled data does help

Theorem (2)

There exists a concept class C_* and a family of distributions \mathscr{P}_* such that:

1 There exists a semi supervised learner that learns successfully under any distribution $P \in \mathscr{P}_*$ with

$$m_{C_*,P}(\varepsilon,\delta) = O\left(\frac{1}{\varepsilon^2} + \frac{\log(1/\delta)}{\varepsilon}\right)$$

2 For any supervised learner and $\varepsilon < \frac{1}{2}$ it holds that

$$\sup_{P\in\mathscr{P}_*}m_{C_*,P}(\varepsilon,\delta)=\infty$$

UNLABELED DATA DOES PROVABLY HELP

Where unlabeled data does help

Can we prove a statement like the first theorem with a universal constant not depending on the concept class? Answer: No

Theorem (3)

There exists a sequence of concept classes $(C_n)_{n\geq 1}$ with arbitrary large VC dimensions and families of distributions $(\mathscr{P}_n)_{n\geq 1}$ such that the statement of Theorem 2 still holds (with an additional supremum over $n \geq 1$).

The classes C_* and C_n

Let $X_* = \{0,1\}^*$ and $X_n = \{0,1\}^n$. C_* consist of all functions on words from X_* given by

$$c_i(x) = \begin{cases} 1 & \text{if } x_i = 1\\ 0 & \text{if } x_i = 0 \text{ or } i > |x| \end{cases}$$

for all $i \ge 0$. C_n is C_* restricted to functions on words of length n.

The classes C_* and C_n

Let $X_* = \{0,1\}^*$ and $X_n = \{0,1\}^n$. C_* consist of all functions on words from X_* given by

$$c_i(x) = \begin{cases} 1 & \text{if } x_i = 1\\ 0 & \text{if } x_i = 0 \text{ or } i > |x| \end{cases}$$

for all $i \ge 0$. C_n is C_* restricted to functions on words of length n.

- The classes C_n are not exotic or artificially constructed
- All classes of infinite VC dimension contain subclasses that are significantly easier to learn in the semi-supervised setting
- Classes and distributions similar to C_{*} and P_{*} were first published by Dudley, Kulkarni, Richardson and Zeitouni in 1994

F

Introduction to PAC learning Semi supervised learning Where SSL doesn't help Where SSL does help End of talk

The distribution families \mathscr{P}_* and \mathscr{P}_n

For
$$i \geq 1$$
 let $p_i = rac{1}{\log_2(3+i)}$

Let σ be any permutation on $\{1, ..., n\}$. Then the distribution P_{σ} on X_n is defined by setting

$$P_{\sigma}(x_{\sigma(i)}=1)=p_i$$

independently for each $1 \le i \le n$. Now define

$$\mathscr{P}_n = \{P_\sigma\}_\sigma, \quad \mathscr{P}_* = \bigcup_{n \ge 1} \mathscr{P}_n$$

UNLABELED DATA DOES PROVABLY HELP

Proof sketch – 1st part

- C_* is semi supervised PAC learnable under any $P_\sigma \in \mathscr{P}_*$
 - Use the following upper bound of the sample complexity for learning under a fixed distribution [Benedek, Itai 1991]:

$$O\Big(\frac{\log(|\frac{\varepsilon}{2}\text{-cover of }C|) + \log(1/\delta)}{\varepsilon}\Big)$$

The p_i fall fast enough that an $\varepsilon/2$ -cover of C_* of size $2^{2/\varepsilon}$ exists

 Without knowledge of P_σ:
 use unlabeled data to find a cover with high probability (apply Chernoff bounds)

Proof sketch – 2nd part

- C_* under \mathscr{P}_* is hard to learn for a supervised learner
 - A game between the learner and an adversary, who plays a probabilistic strategy
 - The adversary picks a large enough *n*, chooses a random permutation σ and selects c_{σ(1)} as the target

$x_{\sigma(1)}$	$x_{\sigma(2)}$	$x_{\sigma(3)}$	$x_{\sigma(4)}$	$x_{\sigma(5)}$	 $ x_{\sigma(n)} $	label
0	1	0	1	0	 0	
1	0	1	0	1	 0	
0	0	0	0	0	 0	
1	1	1	0	1	 0	
0	0	0	0	0	 0	
0	1	0	0	0	 0	
1	0	1	0	1	 0	
1	1	0	0	1	 1	

$x_{\sigma(1)}$	$x_{\sigma(2)}$	$x_{\sigma(3)}$	$x_{\sigma(4)}$	$x_{\sigma(5)}$		$ x_{\sigma(n)} $	label
0	1	0	1	0		0	0
1	0	1	0	1		0	1
0	0	0	0	0		0	0
1	1	1	0	1		0	1
0	0	0	0	0		0	0
0	1	0	0	0		0	0
1	0	1	0	1		0	1
1	1	0	0	1	•••	1	?

$x_{\sigma(1)}$	$x_{\sigma(2)}$	$x_{\sigma(3)}$	$x_{\sigma(4)}$	$x_{\sigma(5)}$		$ x_{\sigma(n)} $	label
0	1	0	1	0		0	0
1	0	1	0	1	•••	0	1
0	0	0	0	0		0	0
1	1	1	0	1		0	1
0	0	0	0	0	•••	0	0
0	1	0	0	0		0	0
1	0	1	0	1	•••	0	1
1	1	0	0	1	•••	1	?

$x_{\sigma(1)}$	$x_{\sigma(2)}$	$x_{\sigma(3)}$	$x_{\sigma(4)}$	$x_{\sigma(5)}$		$x_{\sigma(n)}$	label
0	1	0	1	0		0	0
1	0	1	0	1		0	1
0	0	0	0	0	•••	0	0
1	1	1	0	1	•••	0	1
0	0	0	0	0	•••	0	0
0	1	0	0	0		0	0
1	0	1	0	1	•••	0	1
1	1	0	0	1	•••	1	?

- *p_i* falls slowly enough that the first column is repeated arbitrarily often for large *n* with high probability (Borel-Cantelli lemma)
- Let *J* be the set of indices of these columns

RUB

Proof sketch – 2nd part

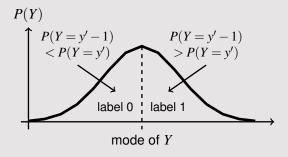
Bayes strategy to label a test instance x

By symmetry, the decision only depends on the value y' of the random variable Y':

$$Y' = \sum_{j \in J} x_j$$

where
$$Y = Y' - x_{\sigma(1)}$$

Proof sketch – 2nd part



- Depends on the true label only if Y hits its mode!
- The Bayes error is at least $\frac{1}{2}(1 P(Y = \text{mode}(Y)))$
- This value is large by the Lindeberg-Feller Central Limit theorem

Open questions

- Are the bounds of Theorem 1 tight?
- For which other classes and distributions do Theorem 2 or 3 hold?
- Can we extend the results to the agnostic setting?

RUB

Thank you!

Do you have any questions?