
How Many Missing Answers

can be Tolerated by Query Learners? ?

Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
simon@lmi.ruhr-uni-bochum.de

Abstract. We consider the model of exact learning using an equivalence
oracle and an incomplete membership oracle. In this model, a random
subset of the learner’s membership queries is left unanswered. Our results
are as follows. First, we analyze the obvious method for coping with miss-
ing answers: search exhaustively through all possible “answer patterns”
associated with the unanswered queries. Thereafter, we present two spe-
cific concept classes that are efficiently learnable using an equivalence or-
acle and a (completely reliable) membership oracle, but are provably not
polynomially learnable if the membership oracle becomes slightly incom-
plete. The first class will demonstrate that the aforementioned method
of exhaustively searching through all possible answer patterns cannot be
substantially improved in general (despite its apparent simplicity). The
second class will demonstrate that the incomplete membership oracle can
be rendered useless even if it leaves only a fraction 1/poly(n) of all queries
unanswered. Finally, we present a learning algorithm for monotone DNF
formulas that can cope with a relatively large fraction of missing answers
(more than sixty percent), but is as efficient (in terms of run-time and
number of queries) as the classical algorithm whose questions are always
answered reliably.

1 Introduction

Certain classes of concepts, such as monotone DNF formulas and deterministic
finite automata, have been shown to be polynomially learnable with equivalence
and membership queries [1, 10, 2], but they are provably not polynomially learn-
able with equivalence queries alone [3]. Algorithms that rely upon a membership
oracle are often of little pactical value because their questions cannot be an-
swered reliably (even by human experts).1 It seems natural to ask how many
missing answers to membership queries can be tolerated by a (properly designed)

? This work has been supported in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778. This publica-
tion only rflects the authors’ view. The author was also supported by the Deutsche
Forschungsgemeinschaft Grant SI 498/4-2.

1 The analogous problem for the equivalence oracle can be circumvented by applying
standard transformations in either the mistake bound or the pac-learning model [8,
2] (augmented by incomplete membership queries).

learning algorithm. Angluin and Slonim [4] introduced the so-called “incomplete
membership oracle”, which behaves as follows. First, it is “persistent” in the
sense that a question that is posed many times will always be answered (or left
unanswered) in the same way. Second, it is “p-fallible” (for some fixed 0 ≤ p ≤ 1)
in the sense that a new question is left unanswered with probability p. Note that
this model allows a smooth transition from learning with equivalence and mem-
bership queries (the case p = 0) to learning with equivalence queries alone (the
case p = 1). A class being polynomially learnable in the former model but not
in the latter must exhibit a “phase transition” at some “critical value” of p. For
classes that are learnable in a robust sense, this phase transition will not happen
before p approaches 1.

Example 1. Consider the class of monotone DNF formulas with n Boolean vari-
ables and m terms. There is a classical algorithm [2] that learns this class with n
equivalence queries and at most mn membership queries. Angluin and Slonim [4]
presented an algorithm that learns this class using an equivalence oracle and a
p-fallible membership oracle. The expected number of queries and the run-time
of their algorithm is polynomial in n and m for each constant 0 < p < 1 (but su-
perpolynomial in 1/(1− p)). If p = 1/2, for instance, then the expected number
of queries is O(mn2). Bshouty and Eiron [5] presented another learning algo-
rithm for monotone DNF formulas whose expected total number of queries is
O(m2n2/(1 − p)2). Thus, their algorithm remains polynomial if p is a function
of the form 1 − 1/poly(n, m). Note that a (1 − 1/poly(n, m))-fallible member-
ship oracle may leave almost all queries unanswered (except for a polynomial
fraction). Since membership oracles that answer only a superpolynomially small
fraction of the queries are easily shown to be useless for polynomial learners, it
follows that the class of monotone DNF formulas exhibits the largest possible
robustness against incomplete membership oracles.2

In this paper, we explore to which extent query learners can be made robust
against missing answers. After the formal definition of the learning model in
Section 2, we present three main results:
In Section 3, we describe and analyze a general transformation of a given poly-
nomial learner (expecting a completely reliable membership oracle) into a new
polynomial learner that can cope with an expected number of O(log n) missing
answers. The new learner performs an exhaustive search through all possible
answer patterns associated with unanswered membership queries. The analysis
has to deal with the issue of exhaustively searching through a space of random
(and exponentially fast growing) size.
In Section 4, we present two specific concept classes that are efficiently learn-
able using an equivalence oracle and a (completely reliable) membership oracle,
but are provably not polynomially learnable if the membership oracle becomes
slightly incomplete. The first class will demonstrate that the aforementioned
method of exhaustively searching through all possible answer patterns cannot

2 Bshouty and Owshanko [6] have shown a similar result for the class of deterministic
finite automata.

be substantially improved in general (despite its apparent simplicity). The second
class will demonstrate that the incomplete membership oracle can be rendered
useless even if it leaves only a fraction 1/poly(n) of all queries unanswered. The
derivation of the lower bounds on the query complexity of these classes must
cope with some subtle issues because the learner can extract random bits from
the answers of the incomplete membership oracle. For randomized learners, the
standard adversary arguments do not readily apply.
In Section 5, we present a learning algorithm for monotone DNF formulas that
can cope with a relatively large fraction of missing answers (more than sixty
percent), but is as efficient as the classical algorithm whose questions are always
answered reliably. In particular, the expected number of queries issued by this
algorithm is O(mn) for an arbitrary constant p < (

√
5 − 1)/2 ≈ 0.62. Our al-

gorithm results from a slight modification of the original algorithm of Angluin
and Slonim [4]. In order to bound the expected number of queries by O(mn),
we have to apply a considerably refined analysis. It uses a method of “stripping-
off” dependencies between random variables, which may be interesting in its
own right.

2 The Learning Model

A concept class C over domain X is a set of functions of the form f : X → {0, 1}.
In the query-learning model, a learner has to identify an unknown function
f∗ ∈ C, called target concept, by means of queries that are honestly answered by
an oracle. In this paper, we focus on the following types of queries:

Equivalence Queries (EQs) The learner passes a function h ∈ C (functions
outside C are not allowed!), called its hypothesis, to the equivalence ora-
cle (EQ-oracle). The oracle answers either YES, signifying that h ≡ f∗, or
returns a so-called counterexample x ∈ X such that h(x) 6= f∗(x).

Membership Queries (MQs) The learner passes an element x ∈ X to the
membership oracle (MQ-oracle). The oracle returns f∗(x).

Incomplete Membership Queries (IMQs) The learner passes an element
x ∈ X to the incomplete membership oracle (IMQ-oracle). If an IMQ at
query point x had already been issued before, then the oracle returns the
same answer again. Otherwise, it flips a coin showing “heads” with some
fixed probability p. If the coin shows “heads”, the oracle returns “∗” (=
no answer). Otherwise, it returns f∗(x). In order to indicate the probability
parameter associated with the IMQ-oracle, we say that the IMQ-oracle is
p-fallible.

Note that the EQ-oracle has, in general, many possibilities to answer honestly: it
may return any counterexample x. Since we will expose the learning algorithms
to a worst case analysis, we may assume that the EQ-oracle pursues an adver-
sary strategy such as to slow down the learning progress as much as possible.
In contrast to the EQ-oracle, the answer of the MQ-oracle (or IMQ-oracle) is

determined by the query (and the outcome of the coin flip). Note that the IMQ-
oracle flips its coins in an on-line fashion. Adversary strategies for the EQ-oracle
can use the outcomes of past coin flips, but are ignorant to outcomes of future
coin flips.

Formally, a learner for concept class C is an oracle algorithm, say A. In the
EQ-model of learning, it is equipped with an EQ-oracle. An analogous remark is
valid for the (EQ,MQ)-model and the (EQ,IMQ)-model of learning. An adversary
strategy consists of rules that specify the target concept and the answers of the
oracles, which may depend on the past interaction between the learner and the
oracles (including the actual query). Learning then proceeds as an interactive
process of the following kind:

1. First a target concept f∗ ∈ C (unknown to A) is fixed.
2. Then the program of A is executed. To each (allowed) query, the correspond-

ing oracle returns an honest answer.

In query-learning models, it is usually assumed that the learner A is determi-
nistic. In the (EQ,IMQ)-model however, even a deterministic program for A
can extract random bits from the answers of the IMQ-oracle. For this reason,
it is natural to allow randomized learners in this model. This has some subtle
consequences. In a recent paper [11], it has been shown that the typical adversary
arguments are no longer valid if A has access to random bits that cannot be
predicted by the adversary.3 Since the adversary will compete with a randomized
learner, it will be convenient (for proof technical reasons) to consider randomized
adversary strategies as well. The following definition takes these complications
of the classical situation (of purely deterministic interactions) into account.

Definition 1. We say that A (a potentially randomized oracle algorithm) learns
C with an expected total number of q queries (of the allowed types) if, for any
(potentially randomized) adversary strategy (concerning the choice of the target
concept and the answers of the oracles), the following holds:

1. A issues at most q queries on the average (where the average is taken over all
coin-flips of the IMQ-oracle, all internal coin-flips of the adversary strategy,
and all internal coin-flips of A).

2. When A stops, target concept f∗ is the only function from C that is consistent
with all answers that were returned to A.

Since asymptotic bounds will be an issue in this paper, we will consider pa-
rameterized concept classes and domains. (Cn) denotes a parameterized family
of concept classes and concepts from Cn are functions from Xn to {0, 1}. A
learning algorithm for (Cn) must be able to learn Cn for each n ≥ 1. Its time

3 For deterministic learners, it can be theoretically justified to evaluate the learner
in a scenario where the adversary does not have to make the initial commitment to
a target concept. Oracle answers are considered as honest as long they do not rule
out any consistent explanation in C. For probabilistic learners however, the initial
commitment is essential. See [11] for more information on this issue.

bound and its (expected) total number of queries are then considered as functions
depending on n (and sometimes depending also on an additional parameter rep-
resenting the complexity of the target concept). A is called a polynomial learner
if its (expected) run-time is polynomially bounded and if it learns its concept
class with an (expected) polynomially bounded number of queries. We will typ-
ically parameterize C such that |Xn| = 2n(1+o(1)). For instance, for Boolean
concept classes with Xn = {0, 1}n, n will denote the number of Boolean vari-
ables. This normalization condition rules out “dirty tricks” (such as realizing a
small query bound in dependence on n by using a “crazy” parameterization).
We will also apply the parameterization to the probability associated with the
IMQ-oracle, i.e., we consider p(n)-fallible IMQ-oracles. Non-constant choices of
p are particularly interesting when p(n) approaches either zero or one. In the
former case, the (EQ,IMQ)-model approaches the (EQ,MQ)-model. In the latter
case, it approaches the EQ-model.

3 Coping with Few Missing Answers

In this section, we show that an algorithm which learns a concept class (Cn)
with EQs and MQs can be made robust (to some extent) against a p(n)-fallible
IMQ-oracle: as long as p(n) does not exceed a critical threshold, there will be
only a polynomially bounded loss in efficiency. In order to equip an algorithm
with robustness to missing answers, we will apply the straightforward method
of exhaustively searching through all possible “answer patterns”. Note, however,
that S missing answers lead to 2S possible patterns. In other words, we will
discuss an exhaustive search through a space of random (and exponentially fast
growing) size.

Clearly, the expectation of 2S is, in general, much different from 2E[S]. As
for a binomially or normally distributed variable, we obtain the following result:

Lemma 1. 1. Let S = Sm,p be the (binomially distributed) random variable
that counts the number of successes in m independent Bernoulli trials, where
each trial has probability p of success. Then E

[

2S
]

= (1 + p)m.

2. Let N = Nµ,σ2 be a normally distributed random variable with expectation µ

and variance σ2. Then E
[

eN
]

= eµ+ 1
2
σ2

.

Proof. 1. The proof is a simple application of the Binomial Theorem:

E
[

2S
]

=

m
∑

k=0

(

m

k

)

pk(1− p)m−k2k

= (1− p)m ·
m

∑

k=0

(

m

k

) (

2p

1− p

)k

= (1− p)m ·
(

1 +
2p

1− p

)m

= (1 + p)m

2. Again, the proof is quite simple:

E
[

eN
]

=
1√
2πσ

·
∫ +∞

−∞

e−
1
2 (

x−µ

σ)2

· exdx

=
eµ

√
2π
·
∫ +∞

−∞

e−
1
2
x2

eσxdx

=
eµ+ 1

2
σ2

√
2π

·
∫ +∞

−∞

e−
1
2
(x2−2σx+σ2)dx = eµ+ 1

2
σ2

In the second equation, we applied the substitution theorem for integrals.
In the last equation, we made use of x2 − 2σx + σ2 = (x − σ)2 and of the
obvious equation

1√
2π
·
∫ +∞

−∞

e−
1
2
(x−σ)2dx = 1 .

•

We briefly note that a similar computation generalizes Lemma 1 for each a > 0
as follows:

E
[

aS
]

= (1 + (a− 1)p)
m

E
[

aN
]

= aµ+ 1
2
σ2 ln(a)

We now get back to the main subject of this section. We aim to transform a
fault-intolerant learner (expecting completely reliable oracles) into a more fault-
tolerant learner (being able to cope with an incomplete membership oracle to
some extent). Let A be an algorithm with time bound t(n) that learns (Cn) with
l(n) EQs and m(n) MQs. Assume t(n), l(n), m(n) are time-constructable.4 We
will design an algorithm A′ that learns (Cn) with EQs and IMQs. The basic idea
is quite simple:
A′ proceeds like A except that MQs of A are passed to an IMQ-oracle; if an IMQ
is left unanswered then both possible answers are returned (which increases the
number of A-simulations that have to be pursued further).
As more and more IMQs are left unanswered, more and more A-simulations
are run in parallel. In order to proceed with all these A-simulations in a well-
organized fashion, A′ uses an administrative tool: the so-called “simulation-tree”

4 A function f(n) is said to be time-constructable (some people say countable) if there
is a deterministic Turing Machine (usually with one or two tapes, but we do not
really need such a restriction) that, when started on input 1n, outputs the binary
representation bin(f(n)) of f(n). This property can be used in the obvious way
to make sure that a given resource bound f(n) is respected. For instance, if we
want to run a simulation for f(n) steps, we could initialize a binary counter to
bin(f(n)) and decrement it after each simulated step. When the counter reaches 0,
the simulation is aborted. The family of time-constructable functions is quite rich.
Assuming a function to be time-constructable is therefore not a severe restriction.
See any standard book on complexity theory (like [7], for instance) for more details.

T (consisting only of a single root in the beginning). At any time, the leaves
in T decompose into “active” and “inactive” leaves. Each “active” leaf v in
T represents an active A-simulation S(v). Each “inactive” leaf v corresponds
to an aborted simulation. Intuitively, A′ will abort simulations that cannot be
correct. Technically, A′ checks whether an A-simulation respects the resource
bounds t(n), l(n), m(n). If not, it can be aborted without damage. Furthermore,
A′ checks a final hypothesis of an A-simulation for correctness. If it does not
coincide with the target concept, then again the A-simulation can be aborted
without damage. In order to control the resource bounds, A′ keeps track of the
following quantities: the number tv of simulated steps within A-simulation S(v),
the number lv of EQs that A has issued in simulation S(v), and the number
mv of MQs that A has issued in simulation S(v). A high level description of A′

(based on the simplifying assumption that A never issues the same query twice)
reads as follows:

Initialization Create a simulation-tree T consisting of a single “active” root-
node r. Initialize the quantities tr, lr, mr to value 0.

Main Loop Select an active leaf v of lowest depth in T and proceed with the A-
simulation S(v) — on the way, the quantities tv, lv, mv are properly updated
— until one of the following conditions holds:

a) Resource-Bound-Condition: tv > t(n), lv > l(n), or mv > m(n).
Corresponding Action: Abort S(v) and declare v as “inactive”.

b) Termination-Condition: A-simulation S(v) terminates with final hypoth-
esis h∗.
Corresponding Action: Invest an EQ to check whether h∗ coincides with
the target concept f∗. If h∗ ≡ f∗, then return h∗ and stop, else abort
S(v) and declare v as “inactive”.

c) Blind-Spot-Condition: An IMQ, say at query point x, is left unanswered.
Corresponding Action: Grow T by creating two “active” children of v:
a left child v0 and a right child v1. In A-simulation S(v0), classifica-
tion label 0 is returned to the IMQ on x. Symmetrically, classifica-
tion label 1 is returned in A-simulation S(v1). Initialize the quantities
tv0

, mv0
, lv0

, tv1
, mv1

, lv1
properly.

We move on to the analysis of A′. Note that T contains exactly one desig-
nated path, starting from the root, that represents the “correct” A-simulation
whose IMQs are always answered correctly. Thus, if the target concept is not ac-
cidentally identified within a wrong A-simulation, this path must finally lead to a
leaf that satisfies the termination-condition with a correct final hypothesis. Note
that the length of this path is bounded by the number S of unanswered IMQs
within the correct A-simulation. Since, in the beginning of the main loop, A′

always selects an “active” leaf v of lowest depth, the depth of T is also bounded
by S, and the total number of leaves in T (= number of A-simulations that are
run in parallel) is bounded by 2S. Note that S is binomially distributed. These
observations are employed in the proof of the following

Theorem 1. Let A be an algorithm with time bound t(n) that learns (Cn)
with l(n) EQs and m(n) MQs. Assume t(n), l(n), m(n) are time-constructable.
Let A′ be the corresponding robust algorithm (as described above). Assume the
IMQ-oracle is p(n)-fallible. Then A′ is an algorithm with expected-time bound
O((1 + p(n))m(n) · t(n)) that learns (Cn) with an expected number of at most
(1 + p(n))m(n) · (l(n) + 1) EQs and with an expected number of at most (1 +
p(n))m(n) ·m(n) IMQs. If p(n) ≤ k · log(n)/m(n) for some constant k, then the
“blow-up” factor (1 + p(n))m(n) is upper-bounded by the polynomial nk log(e) ≈
n1.44k.

Proof. We may assume without loss of generality that A issues exactly m(n)
MQs. Let S = Sm(n),p(n) be the binomially distributed random variable that
counts the total number of unanswered IMQs associated with the designated A-
simulation whose blind spots are replaced by correct classification labels. Clearly,
the random variable 2S bounds the total number of A-simulations that are run
in parallel by A′ from above. Recall that A′ aborts an A-simulation as soon as
it runs for more than t(n) steps, or as soon as it issues more than l(n) EQs or
more than m(n) MQs. For this reason, the expected run-time of A′ is bounded by
O(E[2S] · t(n)). Similarly, the expected number of EQs issued by A′ is bounded
by E[2S] · (l(n) + 1), and the expected number of IMQs issued by A′ is bounded
by E[2S]·m(n). Thus, the proof can be completed by an application of Lemma 1:

E
[

2S
]

= (1 + p(n))m(n) < ep(n)·m(n)

Clearly, p(n) ≤ k · log(n)/m(n) implies that ep(n)·m(n) ≤ nk log(e). •

In the sequel, we will refer to A′ as the exhaustive search simulation of A.

4 High Inherent Vulnerability to Missing Answers

In this section, we demonstrate the existence of concept classes that are efficiently
learnable with EQs and MQs, but are provably not polynomially learnable if the
membership oracle becomes slightly incomplete. In other words, each learning
strategy is doomed to fail (in polynomial time) even if only few answers are
missing. The first class that we employ for this purpose is called ADDRESSING
(first considered by Maass and Turan [9]). The second class, that exhibits an even
higher vulnerability to missing answers, will be called PARITY-ADDRESSING
(and is actually a variant of the basic class ADDRESSING).

4.1 The Class ADDRESSING

We start with a formal description of the class ADDRESSING. For each fixed
n, the domain Xn = An ∪Dn of ADDRESSING consists of n “address points”
An = {a1, . . . , an} and 2n “data points” Dn = {dα : α ∈ {0, 1}n}. With each

α ∈ {0, 1}n, we associate the function fα that maps ai to αi, i = 1, . . . , n, dα to
1, and all remaining data points to 0. ADDRESSINGn = {fα : α ∈ {0, 1}n}.5

It has been observed by Maass and Turan [9] that (ADDRESSINGn) can be
learned with n MQs, but at least 2n − 1 queries are needed if one learns with
equivalence queries alone. The following result demonstrates that the two models
are still separated by a superpolynomial gap if the EQ-oracle is augmented by an
ω(log(n)/n)-fallible IMQ-oracle. If the IMQ-oracle is p-fallible for some constant
p > 0, the gap is still exponential:

Lemma 2. The expected total number of queries needed to learn the concept
class (ADDRESSINGn) with EQs and p(n)-fallible IMQs is at least (1+p(n))n/2.

Proof. The expected number of queries needed for learning ADDRESSINGn

cannot increase if we change the learning model in favour of the learner as
follows:

– In a first phase, the learner issues n IMQs on all the address points for free.
Afterwards (phase 2), we start counting the number of queries that are still
needed until the target concept is exactly identified.

Consider the following adversary strategy against any learner:

– Pick α ∈ {0, 1}n uniformly at random and commit yourself to target concept
fα.

– Upon query EQ(fβ), β 6= α, return dβ as counterexample.

Let S = Sn,p(n) be the binomially distributed random variable that counts the
number of unanswered IMQs in the first phase of the learner. Let Qu be the
random variable that counts the number of queries in the second phase condi-
tioned to the event that S = u. Finally, Q denotes the unconditioned random
variable that counts the number of queries in the second phase. We claim that
E[Qu] ≥ 2u/2. Let us first show how the proof can be completed using this claim
and Lemma 1:

E[Q] =

n
∑

u=0

Pr[S = u] ·E[Qu] ≥ 1

2
·

m
∑

u=0

Pr[S = u] ·2u =
1

2
·E[2S] =

1

2
·(1+p(n))n

We finally sketch the proof for E[Qu] ≥ 2u/2. The main argument is as fol-
lows. Since u answers are missing after phase 1, there are still 2u functions in
ADDRESSINGn that are possible target functions. From the perspective of the
learner, all of them are equally likely. Furthermore, each query in phase 2 —
except for query EQ(fα) — will rule out at most one of these functions, and the
remaining ones are still equally likely.6 Thus, on the average, it takes (at least)
2u/2 queries until the learner accidentally finds the target concept (by issuing
query EQ(fα)).7 •
5 The name ADDRESSING is used because α is a binary address of length n that

uniquely determines 1-out-of-2n data points.
6 Formally, one can argue that all functions that are still possible target functions

have the same a posteriori probability in the sense of Bayesian decision theory.
7 If the learner issues only (irredundant) equivalence queries in phase 2, then the

bound (1 + p(n))n)/2 is actually tight for phase 2.

Consider the exhaustive search simulation of the algorithm that learns the class
(ADDRESSINGn) with n MQs. According to Theorem 1, its expected total
number of queries is (1+p(n))n·n. 8 A comparison to the lower bound in Lemma 2
shows that no learner can perform substantially better. In particular, exhaustive
search simulation is a polynomial learning method for (ADDRESSINGn) if the
expected number of missing answers, which is actually p(n)n, satisfies p(n)n =
O(log(n)), or equivalently, if p(n) = O(log(n)/n). The lower bound in Lemma 2
shows that no algorithm can polynomially learn (Cn) if p(n) goes beyond this
barrier.

4.2 The Class PARITY-ADDRESSING

We aim to construct a concept class that (loosely speaking) exhibits the “highest
possible” vulnerability to missing answers. More specifically, given an arbitrary
integer constant k ≥ 1, we will design a concept class (Cn) over a domain (Xn)
with the following properties:

Property 1 For q(n) = nk+1, |Xn| = (n + 2n)q(n) = 2n(1+o(1)).
Property 2 (Cn) is efficiently learnable with nq(n) MQs and q(n)−1 EQs (and

this is query-optimal).
Property 3 The expected total number of queries of each algorithm that learns

(Cn) with EQs and n−k-fallible IMQs asymptotically equals 2n−1q(n).

This establishes an exponential gap between the (EQ,MQ)- and the (EQ,IMQ)-
model even if the IMQ-oracle almost always answers: only a polynomially small
fraction of the answers is missing on the average.9

As for the technical construction of a class with these properties, we use a
variant of ADDRESSING where each address bit is computed as a parity of many
other bits. If one of these many bits is not returned by the IMQ-oracle, then the
parity function cannot be evaluated and the address bit remains unknown. For
this reason, the class will be called PARITY-ADDRESSING.

We start with the specification of the domain. Xn decomposes into a set of
nq(n) “address points”, An, and a (disjoint) set of 2nq(n) “data points”, Dn,
respectively. More precisely, Xn = An ∪Dn, where

An = {ai,j : i = 1, . . . , n, j = 1, . . . , q(n)} ,

Dn = {dβ,j : β ∈ {0, 1}n, j = 1, . . . , q(n)} .

We say that data point dβ,j has binary address β. With each Boolean matrix
B ∈ {0, 1}n×q(n), we associate the binary address α(B) ∈ {0, 1}n such that

αi(B) = Bi,1 ⊕ · · · ⊕Bi,q(n) .

8 In fact, if the simulation never issues the same query twice, it can be shown that it
learns (ADDRESSINGn) with O (n + (1 + p(n))n) queries on the average.

9 Note that superpolynomially small fractions of missing answers will necessarily blur
the distinction between the two models.

In other words, α(B) is obtained from B by “XORing” the bits in each row of
B. For each B ∈ {0, 1}n×q(n) and each j′ ∈ {1, . . . , q(n)}, we define the function
fB,j′ : Xn → {0, 1} by setting

fB,j′(ai,j) = Bi,j ,

fB,j′(dβ,j) =

{

1 if β = α(B) and j = j′ ,
0 otherwise .

This leads to the concept class

PARITY-ADDRESSINGn =
{

fB,j′ : B ∈ {0, 1}n×q(n), j′ ∈ {1, . . . , q(n)
}

.

We now argue that PARITY-ADDRESSINGn (in the role of Cn) has the three
properties mentioned above. Property 1 is obvious. The following lemma is con-
cerned with Property 2.

Lemma 3. (PARITY-ADDRESSINGn) can be learned efficiently with nq(n)
MQs and q(n)− 1 EQs.

Proof. Let fB,j′ denote the target concept. Invest nq(n) MQs to learn matrix B.
Given B, compute α(B). Invest q(n)− 1 EQs for an exhaustive search through
all q(n) data points with binary address α(B). •
As a matter of fact, the learning method described in the proof of Lemma 3 is
optimal:

Lemma 4. (PARITY-ADDRESSINGn) cannot be learned (even with unbounded
computational resources) with EQs and MQs if the total number of queries is
smaller than nq(n) + q(n)− 1.

Proof. Let fB,j′ ∈ PARITY-ADDRESSINGn denote the unknown target con-
cept.10 The progress of a learning algorithm can be measured by keeping track
of the set D′

n ⊆ Dn containing all data points d such that fB,j′(d) = 1 is still
conceivable. The proof easily follows from the following (easy to prove) observa-
tions:

1. Each EQ or each MQ on a data point reduces the size of D′
n at most by 1

(assuming an appropriate adversary).
2. We may assume without loss of generality that, for each i ∈ {1, . . . , n}, a

learner either explores all labels fB,j′(ai,1), . . . , fB,j′(ai,q(n)) or none of them.
In the former case, the learner made the “investment” of q(n) MQs, but may
derive the address bit αi(B) = fB,j′(ai,1)⊕· · ·⊕ fB,j′(ai,q(n)) afterwards. In
the latter case, the address bit αi(B) remains unknown (in the strong sense
that the learner can get no advantage over random guessing).11

10 Choosing B uniformly at random from {0, 1}n×q(n) and j′ uniformly at random from
{1, . . . , q(n)} is a good adversary strategy.

11 Note that this address bit would remain unknown if the learner invested fewer than
q(n) MQs on query points ai,1, . . . , ai,q(n). For this reason, the learner had better
follow the “all or nothing” principle.

3. If all MQs are issued in the beginning (before the first EQ is issued), then
the knowledge of a new address bit will halve the size of D′

n. In general
(assuming an appropriate adversary), the knowledge of a new address bit
cannot shrink the size of D′

n by a factor exceeding 2.
4. In order to shrink the size of D′

n from 2nq(n) (the initial value) to 1 (the
value after the identification of the target concept), the best one can hope
for is reducing the size from 2nq(n) to n by means of n halvings (nq(n)
MQs on address points), and then decrementing the size from q(n) to 1
(q(n)−1 additonal queries on data points). (Using fewer “halvings” or using
a “decrementation” before the last “halving” will slow down the learning
progress.)

We omit further details. •

The final lemma is concerned with Property 3.

Lemma 5. Let p(n) = 1− (1− n−k)nk+1 ≈ 1− e−n. The expected total number
of queries of each algorithm that learns (PARITY-ADDRESSINGn) with EQs
and n−k-fallible IMQs is at least (1 + p(n))nq(n)/2.

Proof. The proof is similar to the proof of Lemma 2. We will sketch the main
ideas. Let fB,j′ denote the target concept.12 We may assume that the nq(n) IMQs
on all address points are given for free to the learner. Remember that αi(B) =
fB,j′(ai,1)⊕· · ·⊕fB,j′(ai,q(n)). Thus, address bit αi(B) remains unknown (in the
strong sense that the learner can get no advantage over random guessing) if one of
the IMQs on ai,1, . . . , ai,q(n) is left unanswered, which happens with probability

p(n) = 1−(1−n−k)nk+1

. Since an address bit remains unknown with probability
p(n), there will be (1 + p(n))n guesses (on the average) for α(B) that are still
conceivable. From the persepctive of the learner, all these guesses are equally
likely. Thus, there are (1 + p(n))nq(n) (equally likely) guesses (on the average)
for the unique data point dα(B),j′ that is mapped to 1 by the target concept. We
may now argue (as in the proof of Lemma 2) that (1 + p(n))nq(n)/2 queries are
needed (on the average) to complete the learning task. •

5 Monotone DNF Learning Revisited

We assume some familiarity with the theory of Boolean formulas. Recall that
a monotone DNF formula is a disjunction of monotone terms (term = Boolean
monomial). The class of monotone DNF formulas with at most m terms and
n Boolean variables is denoted as MDNFm,n. We impose the following lattice
structure on the Boolean cube {0, 1}n:

x ≤ y :⇔ ∀i ∈ {1, . . . , n} : xi ≤ yi .

12 Like in the proof of Lemma 4, we may assume that an adversary has chosen B and
j uniformly at random.

For each Boolean point x, let xi denote the point obtained from x by flipping the
i-th coordinate (and keeping the other coordinates fixed). A point x ∈ {0, 1}n
is called minimal point of f ∈ MDNFm,n if x is a minimal point in the Boolean
lattice such that f(x) = 1. If f is minimized, the minimal points of f are in
one-to-one correspondence with the monotone terms of f . In what follows, we
identify f with its set of minimal points. Conversely, each h ⊆ {0, 1}n is identified
with the function from MDNFm,n that maps x to 1 iff there exists a point p ∈ h
such that x ≥ p, i.e., x must be located above a point from h in the Boolean
lattice. Here is the main result of this section:

Theorem 2. For each constant p < c0 := (
√

5−1)/2 ≈ 0.62, MDNF-LEARNER
(described below) learns (MDNFm,n) with EQs and p-fallible IMQs such that the
expected total number of queries is bounded by13

2mn

1− p− p2
+

(1− p)m

1− p− p2
= O(mn) .

The remainder of this section is devoted to the proof of Theorem 2. We start
with a somewhat technical but useful lemma:

Lemma 6. Let X be a random variable with positive integer values. P denotes
another random variable with (possibly multidimensional) “values” in some finite
set P.14 For each j ≥ 1, let Yj denote a random variable with non-negative real
values that satisfies E[Yj |X < j] = 0 and

∀j ≥ 1, ∀p ∈ P : E[Yj |X ≥ j, P = p] ≤ B .

for some bound B ≥ 0. Then: E
[

∑

j≥1 Yj

]

≤ B · E[X].

Proof. The proof is obtained from the following straightforward computation:

E

∑

j≥1

Yj

 =
∑

j≥1

E[Yj]

=
∑

j≥1

E[Yj |X ≥ j] · Pr[X ≥ j]

=
∑

j≥1

∑

p∈P

E[Yj |P = p, X ≥ j] · Pr[P = p|X ≥ j] · Pr[X ≥ j]

≤ B ·
∑

j≥1

Pr[X ≥ j] ·

∑

p∈P

Pr[P = p|X ≥ j]

= B ·
∑

j≥1

Pr[X ≥ j]

= B ·
∑

j≥1

Pr[X = j] · j = B · E[X] . •

13 c0 satisfies c0 + c2
0 = 1. Thus, 1 − p − p2 is a strictly positive constant.

14 The type of this set will be irrelevant.

In our application of Lemma 6, X will count how many times a probabilistic
procedure must be called until it is (for the first time) “succesful”. Yj will count
the number of queries during the j-th call of the procedure (which is zero by
default if there is no j-th call because X < j). Random variable P will be chosen
such that E[Yj |X ≥ j, P = p] = E[Yj |P = p]. Loosely speaking, P allows us
to strip off the statistical dependencies between Yj and X . This will enable us
derive a suitable upper bound B on E[Yj |X ≥ j, P = p] and to apply Lemma 6.

We move on and present the algorithm MDNF-LEARNER (a slight modifi-
cation of the original algorithm of Angluin and Slonim [4]):

algorithm MDNF-LEARNER
begin

h← ∅ ; WP← ∅;
while EQ(h) returns

a counterexample x
do if h(x) = 0

then add newpoints(x) to h
else remove wrongpoints(x)

from h and add it to WP
fi

od
end

procedure wrongpoints(x)
begin

return {p ∈ h : p ≤ x}
end

procedure newpoints(x)
begin

Q← {i ∈ {1, . . . , n} : xi = 1};
B ← ∅ ; BS← ∅;
while Q 6= ∅
do select and remove

an element i from Q;
if xi ∈WP

then b← 0
else b← IMQ(xi)

fi;
case of

b = 0 : do nothing
b = ∗ : add i to B

and xi to BS;
b = 1 : x← xi; Q← Q ∪ B;

B = ∅
esac

od
return {x}∪BS

end

MDNF-LEARNER has two global variables: h and WP. Both of them are ini-
tialized as empty sets. During the run of MDNF-LEARNER, the minimal points
of the target concept f∗ will be added to h, but, unfortunately, some negative ex-
amples of f∗ will temporarily be added to h as well. Procedure newpoints is used
to extend h until it contains all minimal points of f∗. Procedure wrongpoints

is used to detect the “wrong points”, i.e., the negative examples of f∗ that had
been included into h. They are removed from h and stored in WP. The fact that
WP contains only negative examples of f∗ can be used to save redundant IMQs.
A more detailed description follows.
Whenever MDNF-LEARNER gets a positive counterexample, say x, to its cur-
rent hypothesis h, it calls the procedure newpoints(x). Procedure newpoints,
when called on a positive counterexample x, tries to find a minimal point of the
target concept f∗ that is located below x in the lattice. It can work towards such

a minimal point by flipping xi from 1 to 0 whenever f∗(x
i) = 1. Technically,

the algorithm keeps track of a set Q (initially containing the 1-coordinates of
x) and (initially empty) sets B and BS (BS = Blind Spots). The elements of
Q are inspected one by one (and removed from Q when they are inspected). If
xi ∈ WP, then f∗(x

i) = 0 and the procedure stores label 0 in local variable b.
Otherwise, an IMQ at query point xi is issued and the returned label (possibly
“∗” if the query is left unanswered) is stored in b. Depending on the label that
is stored in b different actions take place. If b = 0, there is nothing to do. If
b = ∗, then i is inserted into B and xi is inserted as “blind spot” into BS. If
b = 1, then the procedure replaces x by xi (thereby moving one step down in the
lattice) and performs the updates Q ← Q ∪ B and B ← ∅. These actions make
sure that the following holds after each iteration of the main loop in procedure
newpoints:

– A coordinate i belongs to Q if xi = 1 and the procedure did not yet try to
determine f∗(x

i) during the call.15

– A coordinate i belongs to B if xi = 1, and an IMQ on query point xi was
left unanswered during the call.

– BS contains all blind spots that are created during the call of the procedure.

When the walk down the lattice gets stuck (which happens when Q = ∅),
the current point x and all “blind spots” in BS are returned as new points
(and then included in the current hypothesis h by the main program). We
say that a call of newpoints at a positive counterexample x is succesful if the
set newpoints(x) contains a minimal point of f∗. Note that the inclusion of
blind spots in newpoints(x) increases the success probability, but it may in-
sert negative examples of f∗ into h. This is corrected by removing points from
h that are located below a negative counterexample. (Compare with procedure
wrongpoints.) Our analysis will use the following central notion. A configura-
tion is a mapping K : {0, 1}n → {0, 1, ∗,−} such that K(x) = 0 ⇒ f∗(x) = 0
and K(x) = 1 ⇒ f∗(x) = 1. K denotes the set of all configurations. Intuitively,
K(x) = − signifies that the IMQ at query point x has not yet been issued. The
other labels indicate that this IMQ has already been issued, and that the la-
bel 0, 1, or ∗ (no answer), respectively, had been returned. MDNF-LEARNER is
started in initial configuration K0 that maps each Boolean point to −. Note that
the current configuration K and the coin flips of the IMQ-oracle completely de-
termine the labels that are returned by the oracle. When the label b ∈ {0, 1, ∗} is
returned upon an IMQ at query point x, the current configuration K is updated
by setting K(x) = b. We are now in the position to analyze MDNF-LEARNER.
The proof of Theorem 2 is completed by the following observations:

1. Since all blind spots are added to h (and removed only if they belong to
WP), no positive counterexample is ever located above a blind spot p unless
p ∈ WP. This motivates the following definitions. The pair (K, x) is called

15 It may be the case that coordinate i was already inspected during the same call (but
not in connection with the same point x).

legal if K(p) 6= ∗ for all p ≤ x such that p /∈ WP. A call newpoints(x) in
configuration K is called a (K, x)-call of newpoints. It follows that MDNF-
LEARNER initiates (K, x)-calls only for legal pairs (K, x). This has an im-
portant consequence: since newpoints(x) issues an IMQ on a query point
y ≤ x only if y /∈ WP, we can be sure that K(y) 6= ∗. The probability of
getting no answer (answer “∗”) is therefore always bounded by p.

2. Assume that a call newpoints(x) gets stuck at some point y. Remember
that y and all blind spots in BS belong to the set newpoints(x) that is
returned upon termination. Point y must be located above a minimal point
of f∗ (which has not yet been included in hypothesis h). Let z be a minimal
point of f∗ that is located below y in the Boolean lattice and comes closest
to y. Let s be the number of levels that separates y from z. If s = 0, then
y = z and newpoints(x) is clearly succesful. If s = 1, then the search for a
new minimal point of f∗ tried to descend from y to z. Since the search got
stuck without descending, the incomplete membership query at z was left
unanswered (answered “∗”). Thus z was included into the set BS of blind
spots. Again, newpoints(x) happens to be succesful. Thus, s ≥ 2 for each
call that is not succesful. Let s(y) ≥ s be the number of coordinates i in y
such that yi is still a positive example of f∗. Note that the probability of
getting stuck at y is ps(y).

3. The preceding observations lead to the following conclusion. For each legal
pair (K, x), the (K, x)-call of newpoints is not succesful with a probability
of at most

s(x)
∑

s=2

ps <

∞
∑

s=2

ps =
p2

1− p
,

where the term ps accounts for the event that the search for a minimal
point of f∗ below x gets stuck at some point y such that s(y) = s. Thus, the
probability of being succesful exceeds q = 1−p2/(1−p) = (1−p−p2)/(1−p).
Since p < c0 and c0 = (

√
5−1)/2 satisfies c2

0 + c0 = 1, we may conclude that
q > 0. In case of success, a new minimal point of f∗ is added to h. Thus,
the expected number of positive counterexamples (= the number of times
procedure newpoints is called) is smaller than m/q = (1−p)m/(1−p−p2).

4. Let (K, x) be a legal pair. Consider a (K, x)-call of newpoints. Since an
IMQ is never issued on a query point y such that K(y) = ∗, at least every
1/(1− p)-th IMQ (on the average) decrements the size of Q∪B by 1. Thus,
the expected number of IMQs per legal call of newpoints is bounded by
n/(1− p).

5. The legal pairs will play the role of P in Lemma 6. We denote the random
variable whose values are legal pairs by P . The preceding observation can
now be restated as follows. If YK,x denotes the random variable that counts
the number of IMQs during the execution of a (K, x)-call of newpoints, then
E[YK,x] ≤ n/(1− p) for each legal pair (K, x).

6. We decompose the run of MDNF-LEARNER into m phases. Each phase ends
after a succesful call of newpoints (when a new minimal point of the target
concept f∗ has been inserted into the hypothesis h). Consider an arbitrary

but fixed phase i. Let X be the random variable that counts the number of
calls of newpoints in phase i. Clearly, E[X] < 1/q = (1−p)/(1−p−p2). Let
Pj = (K(j), x(j)) be the random variable (with legal pairs as values) such
that the j-th call of newpoints in phase i is a Pj -call. Let Yj be the random
variable that counts the number of IMQs during the execution of this call
(with default Yj = 0 if newpoints is called fewer than j times in phase
i). Thus, Yj conditioned to X < j is always zero. Recall that the current
configuration K(j) and the coin flips of the IMQ-oracle completely determine
the labels that are returned by the oracle during the call newpoints(x(j)).
The information how configuration K(j) was reached (and in particular the
fact that the last j− 1 calls of newpoints were not succesful) are redundant
given the information (K(j), x(j)). Thus, Yj conditioned to X ≥ j and
Pj = (K(j), x(j)) has the same probability distribution as Yj conditioned
to Pj = (K(j), x(j)). Furthermore Yj conditioned to Pj = (K(j), x(j)) is
distributed like YK(j),x(j). We conclude that

E [Yj |X ≥ j, Pj = (K(j), x(j))] = E [Yj |Pj = (K(j), x(j))] ≤ n/(1− p) .

Lemma 6 implies that the expected total number of IMQs in phase i is at
most E[X] · n/(1 − p) = n/(q(1 − p)) = n/(1 − p − p2). Summing over all
m phases, we get that the expected total number of IMQs is bounded by
mn/(1− p− p2).

7. Finally note that the total number of negative counterexamples is upper-
bounded by the total number of blind-spots, which, in turn, is upper-bounded
by the total number of IMQs. •

6 Open Problems

It would be interesting to know more robust learners for specific classes, and to
know more natural examples of classes with high inherent vulnerability. Further-
more, we would like to know whether the barrier (

√
5 − 1)/2 from Theorem 2

can be pushed closer to 1.

Acknowledgements Thanks to an anonymous referee who found (and fixed!) two
flaws in an earlier version of the paper and made numerous valuable suggestions.

References

1. Dana Angluin. Learning regular sets from queries and counterexamples. Informa-

tion and Computation, 75:87–106, 1987.
2. Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,

1988.
3. Dana Angluin. Negative results for equivalence queries. Machine Learning, 5:121–

150, 1990.
4. Dana Angluin and Donna K. Slonim. Randomly fallible teachers: Learning mono-

tone DNF with an incomplete membership oracle. Machine Learning, 14:7–26,
1994.

5. Nader H. Bshouty and Nadav Eiron. Learning monotone DNF from a teacher that
almost does not answer membership queries. In Proceedings of the 14th Annual

Workshop on Computational Learning Theory, pages 546–557. Springer Verlag,
2001.

6. Nader H. Bshouty and Avi Owshanko. Learning regular sets with an incomplete
membership oracle. In Proceedings of the 14th Annual Workshop on Computational

Learning Theory, pages 574–588. Springer Verlag, 2001.
7. John E. Hopcroft and Jeffrey D. Ullman. Formal Languages and their Relation to

Automata. Addison Wesley, 1969.
8. Nick Littlestone. Learning quickly when irrelevant attributes abound: a new linear

threshold algorithm. Machine Learning, 2(4):245–318, 1988.
9. Wolfgang Maass and György Turán. Lower bound methods and separation results

for on-line learning models. Machine Learning, 9:107–145, 1992.
10. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using

homing sequences. Information and Computation, 103(2):299–347, 1993.
11. Hans U. Simon. How many queries are needed to learn one bit of information?

In Proceedings of the 14th Annual Workshop on Computational Learning Theory,
pages 1–13. Springer Verlag, 2001.

