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Abstract. Linear sets are the building blocks of semilinear sets, which
are in turn closely connected to automata theory and formal languages.
Prior work has investigated the learnability of linear sets and semilinear
sets in three models – Valiant’s PAC-learning model, Gold’s learning in
the limit model, and Angluin’s query learning model. This paper consid-
ers a teacher-learner model of learning families of linear sets, whereby
the learner is assumed to know all the smallest sets T1, T2, . . . of labelled
examples that are consistent with exactly one language in the class L to
be learnt, and is always presented with a sample S of labelled examples
such that S is contained in at least one of T1, T2, . . .; the learner then in-
terprets S according to some fixed protocol. In particular, we will apply
a generalisation of a recently introduced model – the recursive teaching
model of teaching and learning – to several infinite classes of linear sets,
and show that the maximum sample complexity of teaching these classes
can be drastically reduced if each of them is taught according to a care-
fully chosen sequence. A major focus of the paper will be on determining
two relevant teaching parameters, the teaching dimension and recursive
teaching dimension, for various families of linear sets.

1 Introduction

A linear set L is defined by a nonnegative lattice point (called a constant) and
a finite set of nonnegative lattice sets (called periods); the members of L are
generated by adding to the constant an arbitrary finite sequence of the periods
(allowing repetitions of the same period in the sequence). A semilinear set is a
finite union of linear sets. Semilinear sets are not only objects of mathematical
interest, but have also been linked to finite-state machines and formal languages.
One of the earliest and most important results on the connection between semi-
linear sets and context-free languages is Parikh’s theorem [9], which states that
any context-free language is mapped to a semilinear set via a function known as
the Parikh vector of a string. Another interesting result, due to Ibarra [6], char-
acterises semilinear sets in terms of reversal-bounded multicounter machines.
Moving beyond abstract theory, semilinear sets have also recently been applied
in the fields of DNA self-assembly [3] and membrane computing [7].
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The learnabilities of linear sets and semilinear sets have been investigated in
Valiant’s PAC-learning model [1], Gold’s learning in the limit model [12], and
Angluin’s query learning model [12]. Abe [1] showed that when the integers are
encoded in unary, the class of semilinear sets of dimension 1 or 2 is polynomi-
ally PAC-learnable; on the other hand, the question as to whether classes of
semilinear sets of higher dimensions are PAC-learnable is open. Takada [12] es-
tablished that for any fixed dimension, the family of linear sets is learnable from
positive examples but the family of semilinear sets is not learnable from only
positive examples. Takada also showed the existence of a learning procedure via
restricted subset and restricted superset queries that identifies any semilinear set
and halts; however, he proved at the same time that any such algorithm must
necessarily be time consuming.

This paper is primarily concerned with the sample complexity of teaching
classes of linear sets with a fixed dimension, which we determine mainly with
two combinatorial parameters (and some variants), the teaching dimension (TD)
and the recursive teaching dimension (RTD). These teaching complexity mea-
sures are based on a variant of the online learning model in which a cooper-
ative teacher selects the instances presented to the learner [5, 13, 11]. In the
teacher-learner model, the teacher must present a finite set of instances so that
the learner achieves exact identification of the target concept via some consis-
tent teaching-learning protocol. To preclude any unnatural collusion between the
teacher and learner that could arise from, say, encoding concepts in examples,
the teaching-learning protocol must, in some definite sense, be “collusion-free.”
To this end, Zilles, Lange, Holte and Zinkevich [13] proposed a rigorous definition
of a “collusion-free” teaching-learning protocol. They designed a protocol – the
recursive teaching protocol – that only exploits an inherent hierarchical structure
of any concept class, and showed that this protocol is collusion-free. The RTD
of a concept class is the maximum sample complexity derived by applying the
recursive teaching protocol to the class. The RTD possesses several regularity
properties and has been fruitfully applied to the analysis of pattern languages [4,
8]. A somewhat simpler protocol, the teaching set protocol [5, 11], only requires
that the teacher present, for each target concept C, a sample S from C of small-
est possible size so that C is the only concept in the class consistent with S.
The teaching set protocol is also collusion-free, although the maximum sample
complexity in this case – the TD – is generally larger than the RTD.

Our results may be of interest from a formal language perspective as well as
from a computational learning theory perspective. First, they uncover a num-
ber of structural properties of linear sets, especially in the one-dimensional case,
which could be applied to study formal languages via the Parikh vector func-
tion. Consider, for example, the set L(π) of all words obtained by substituting
nonempty strings over {a} for variables in some nonempty string π of symbols
chosen from {a} ∪ X, where X is an infinite set of variables.3 As will be seen
later, the Parikh vector maps L(π) to a linear subset L of the natural num-
bers such that the sum of L’s periods does not exceed the constant associated

3 L(π) is known as a non-erasing pattern language.
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to L. Thus one could determine various teaching complexity measures of any
non-erasing pattern language from the teaching complexity measures of a cer-
tain linear subset of the natural numbers. Second, the class of linear sets affords
quite a natural setting to study models of teaching and learning over infinite
concept classes. Besides showing that the RTD can be significantly lower than
the TD for many infinite classes of linear sets, we will consider a more stringent
variant of the RTD, the RTD+, which considers sequential teaching of classes
using only positive examples. It will be shown that there are natural classes of
linear sets that cannot even be taught sequentially using only positive exam-
ples while the RTD is finite; these examples illustrate how supplying negative
information may sometimes be indispensable to successful teaching and learning.

2 Preliminaries

N0 denotes the set of all nonnegative integers and N denotes the set of all positive
integers. For each integer m ≥ 1, let Nm

0 = N0 × . . . × N0 (m times). Nm
0 is

regarded as a subset of the vector space of all m-tuples of rational numbers
over the rational numbers. For each r ∈ N, [r] denotes {1, . . . , r}. For any v =
(a1, . . . , am) ∈ Nm

0 , define ‖v‖1 =
∑m

i=1 ai. 0 will denote the zero vector in Nm
0

when there is no possibility of confusion.

2.1 Linear Sets

A subset L of Nm
0 is said to be linear iff there exist an element c and a finite subset

P of Nm
0 such that L = c+〈P 〉 := {q : q = c+n1p1+ . . .+nkpk, ni ∈ N0, pi ∈ P}.

c is called the constant and each pi is called a period of c+〈P 〉. Denote 0+〈P 〉 by
〈P 〉. For any linear set L, if L = c+ 〈P 〉, then (c, P ) is called a representation of
L. Any finite P ⊂ Nm

0 is independent iff for all P ′ ( P , it holds that
〈
P ′
〉
6= 〈P 〉.

A representation (c, P ) of a linear set L is canonical iff P is independent. A linear
subset of Nm

0 will also be called a linear set of dimension m.
〈
{p1, . . . , pk}

〉
will

often be written as 〈p1, . . . , pk〉 and d〈p1, . . . , pk〉 will denote 〈dp1, . . . , dpk〉.
Our paper will focus on the linear subsets of N0. The main classes of linear

sets investigated are denoted as follows. In these definitions, k ∈ N.

(i) LINSETk := {〈P 〉 : P ⊂ N0 ∧ ∃p ∈ P [p 6= 0] ∧ |P | ≤ k}.
(ii) LINSET :=

⋃
k∈N LINSETk.

(iii) CF–LINSETk
4 := {〈P 〉 : ∅ 6= P ⊂ N ∧ gcd(P ) = 1 ∧ |P | ≤ k}.

(iv) CF–LINSET :=
⋃

k∈N CF–LINSETk.
(v) NE–LINSETk

5 := {c+ 〈P 〉 : c ∈ N0 ∧ P ⊂ N0 ∧ |P | ≤ k ∧
∑

p∈P p ≤ c}.
(vi) NE–LINSET :=

⋃
k∈N NE–LINSETk.

Note that the classes in items (I) to (IV) exclude singleton linear sets; the
reason for this omission will be explained later. The motivation for studying
each subfamily in items (III) to (VI) will be explained as it is introduced in the
forthcoming sections.

4 CF stands for “cofinite.”
5 NE stands for “non-erasing.”
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2.2 Teaching Dimension and Recursive Teaching Dimension

The two main teaching parameters studied in this paper are the teaching dimen-
sion and the recursive teaching dimension.

Let L be a family of subsets of Nm
0 . Let L ∈ L and T be a subset of Nm

0 ×
{+,−}. Furthermore, let T+ (resp. T−) be the set of vectors in T that are
labelled “+” (resp. “−”). X(T ) is defined to be T+ ∪ T−. A subset L of Nm

0 is
said to be consistent with T iff T+ ⊆ L and T− ∩ L = ∅. T is a teaching set for
L w.r.t. L iff T is consistent with L and for all L′ ∈ L \ {L}, T is not consistent
with L′. Every element of Nm

0 × {+,−} is known as a labelled example.

Definition 1. [5, 11] Let L be any family of subsets of Nm
0 . Let L ∈ L. The

size of a smallest teaching set for L w.r.t. L is called the teaching dimension
of L w.r.t. L, denoted by TD(L,L). The teaching dimension of L is defined as
sup{TD(L,L) : L ∈ L} and is denoted by TD(L).

Another complexity parameter recently studied in computational learning
theory is the recursive teaching dimension. It refers to the maximum size of
teaching sets in a series of nested subfamilies of the family.

Definition 2. (Based on [13, 8]) Let L be any family of subsets of Nm
0 . A teach-

ing sequence for L is any sequence R = ((F0, d0), (F1, d1), . . .) where (i) the
families Fi form a partition of L and each Fi is nonempty, and (ii) di =
TD(L,L \

⋃
0≤j<i Fj) for all i and all L ∈ Fi. sup{di : i ∈ N0} is called the

order of R, and is denoted by ord(R). The recursive teaching dimension of L
is defined as inf{ord(R) : R is a teaching sequence for L} and is denoted by
RTD(L).

One can also restrict the instances of the teaching sets in a teaching sequence
to positive examples; the best possible order of such a teaching sequence will be
denoted by RTD+.

Definition 3. Let L be any family of subsets of Nm
0 . A teaching sequence with

positive examples for L (or positive teaching sequence for L) is any sequence
P = ((F0, d0), (F1, d1), . . .) such that (i) the families Fi form a partition of
L and each Fi is nonempty, and (ii) for all i and all L ∈ Fi, there is a sub-
set SL ⊆ L with |SL| = di < ∞ such that for all L′ ∈

⋃
j≥i Fj , it holds

that SL ⊆ L′ ⇒ L = L′. sup{di : i ∈ N0} is called the order of P , and
is denoted by ord(P ). If L has at least one teaching sequence with positive
examples, then the positive recursive teaching dimension of L is defined as
inf{ord(P ) : P is a teaching sequence with positive examples for L} and is de-
noted by RTD+(L). If L does not have any teaching sequence with positive
examples, define RTD+(L) =∞.

A teaching plan for L is a teaching sequence ((F0, d0), (F1, d1), . . .) for L such
that |Fi| = 1 for each i. A teaching plan (({L0}, d0), ({L1}, d1), ({L2}, d2), . . .)
for L will often be written as ((L0, S0), (L1, S1), (L2, S2), . . .), where Si is a teach-
ing set for Li w.r.t. L \ {Lj : 0 ≤ j < i}. A teaching plan with positive examples
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for L is defined analogously. Note that for any family L, if TD(L,L) = ∞
for some L ∈ L, then any teaching plan for L must have an infinite order.
Moreover, TD,RTD and RTD+ are monotonic, that is, for all L′ ⊆ L and
K ∈ {TD,RTD,RTD+}, K(L′) ≤ K(L). Another useful fact is that for any
family L, inf{TD(L,L) : L ∈ L} ≤ RTD(L).

For any L′ ⊆ L, call R = ((F0, d0), (F1, d1), . . .) a teaching subsequence
for L covering L′ iff F0,F1, . . . are nonempty, pairwise disjoint subsets of L
such that L′ ⊆

⋃
i∈N0
Fi and di = TD(L,L \

⋃
0≤j<i Fj) for all i and all

L ∈ Fi. Define ord(R) = sup{di : i ∈ N0} and RTD(L′,L) = inf{ord(R) :
R is a teaching subsequence for L covering L′}.

A family L of subsets of Nm
0 is said to have finite thickness [2] iff for every

v ∈ Nm
0 , the class of linear sets in L that contain v is finite. Note that finite

thickness is a sufficient condition for families that do not contain the empty set
to have a teaching plan with positive examples. The proof is omitted.

Proposition 4. Let L be a family of subsets of Nm
0 such that L has finite thick-

ness and ∅ /∈ L. Then there exists a teaching plan with positive examples for L,
Q, such that ord(Q) = RTD+(L).

The next proposition provides a necessary condition for any family to have
a teaching sequence with positive examples. This condition will be used later to
establish the non-existence of positive teaching sequences for some families of
linear sets.

Proposition 5. Let L be a family of subsets of Nm
0 that has at least one posi-

tive teaching sequence. Then for every L ∈ L, there does not exist any infinite
descending chain H0 ) H1 ) H2 ) . . . such that {H0, H1, H2, . . .} ⊆ L and
L ( Hi for each i.

Proof. Suppose there is some L ∈ L for which there exists an infinite descending
chain H0 ) H1 ) H2 ) . . . with {H0, H1, H2, . . .} ⊆ L and L ( Hi for each
i. Assume by way of a contradiction that ((L0, d0), (L1, d1), . . .) were a positive
teaching sequence for L. Suppose L ∈ Li for some i. Note that for all j ∈
{0, . . . , i}, L ( Hj implies that Hj ∈ Lkj

for some kj < i. Further, for all
j ∈ {0, . . . , i−1}, since Hj+1 ( Hj , it must hold that kj < kj+1. This contradicts
the fact that 0 ≤ kj < i for all j ∈ {0, . . . , i}.

3 Linear Subsets of N0 With Constant 0

This section will analyse the class LINSET of linear subsets of N0 with constant
0. Even in the apparently simple one-dimensional case, the teaching complexity
measures can vary quite widely across families of linear sets. Many proofs will
exploit the fact that linear sets of dimension 1 are ultimately periodic, a property
that has no exact analogue for linear sets of higher dimensions.

Proposition 6. [10] Let P ⊂ N be a finite set such that gcd(P ) = 1. Then
N \ 〈P 〉 is finite. The largest number in N \ 〈P 〉 is known as the Frobenius
number of 〈P 〉.
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For any P = {p1, . . . , pk} with gcd(P ) = 1, F (P ) and F (p1, . . . , pk) will
denote the Frobenius number of 〈P 〉. We will characterise the teaching sets of
all linear sets 〈P 〉 such that gcd(P ) = 1 with respect to LINSET in terms of P
and a certain (finite) subset of N \ 〈P 〉. The following variation of a notion from
the theory of numerical semigroups will help to formulate the characterisation.

The partial ordering induced by P (modified from [10]) is defined as follows:
x ≤P y ⇐⇒ ∃a ∈ N : y − ax ∈ 〈P 〉. We write x <P y as an abbreviation
of x ≤P y ∧ x 6= y. One has x ∈ 〈P 〉 ∧ x ≤P y ⇒ y ∈ 〈P 〉, or equivalently,
y /∈ 〈P 〉 ∧ x ≤P y ⇒ x /∈ 〈P 〉.

For the rest of this section, “maximal” (resp. “minimal”) always means “max-
imal w.r.t. ≤P ” (resp. “minimal w.r.t. ≤P ”) unless specified otherwise. Let
MAXP be the set of maximal elements in N \ 〈P 〉 and let MINP denote the
set of minimal elements in 〈P 〉 \ {0}. The following lemma collects some useful
known facts. Many of these facts are proven in [10], or may be directly deduced
from related results proven in [10].

Lemma 7. (i) N \ 〈P 〉 contains an infinite ascending chain x0 <P x1 <P

x2 <P . . . (e.g. xi = 1 + ip with an arbitrary choice of p ∈ P ) iff gcd(P ) >
1.

(ii) If H ⊆ 〈P 〉, then the following hold:
(a) 〈H〉 ⊆ 〈P 〉.
(b) The partial ordering ≤P is a refinement of the partial ordering ≤H ;

that is, for any x, y, x ≤H y implies x ≤P y.
(c) MINP ∩ 〈H〉 ⊆ MINH .

(iii) Let s = a1p1 + . . .+arpr ∈ 〈P 〉 and let I = {i ∈ [r]| ai 6= 0}. Then pi ≤P s
for each i ∈ I. This implies that MINP ⊆ P .

(iv) If p, p′ ∈ P and p <P p′, then p′ is superfluous, i.e., 〈P 〉 = 〈P \ {p′}〉.
(v) If P is independent, then P = MINP .

For the rest of this section, it will always be assumed that P is independent.
We now study teaching sets.

Lemma 8. 1. Let T be a teaching set for 〈P 〉 w.r.t. LINSET. Then P ⊆ T+.
2. Let T be a teaching set for 〈P 〉 w.r.t. LINSETk for k = |P | + 1. Then, for

each x ∈ N \ 〈P 〉, there exists y ∈ T− such that x ≤P y.

Proof.

1. Since the labelling in T is consistent with 〈P 〉, it follows that T+ ⊆ 〈P 〉
and T− ∩ 〈P 〉 = ∅. Therefore,

〈
T+
〉
⊆ 〈P 〉 so that

〈
T+
〉

is consistent with

T . Since T is a teaching set for 〈P 〉, we may conclude that
〈
T+
〉

= 〈P 〉,
which implies that ≤T+ is the same partial ordering as ≤P . Since P (by the
general convention made above) is independent, it follows that P = MINP =
MINT+ ⊆ T+. Thus P ⊆ T+, as desired.

2. Pick an arbitrary but fixed x ∈ N \ 〈P 〉. We have to show that T− contains
some element y such that x ≤P y. Let P ′ = P ∪ {x}. Clearly, 〈P 〉 is a
proper subset of

〈
P ′
〉

and
〈
P ′
〉

is consistent with T+. Since T is a teaching
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set for 〈P 〉 w.r.t. LINSETk and 〈P 〉,
〈
P ′
〉
∈ LINSETk, it follows that T−

contains an element y ∈
〈
P ′
〉
\ 〈P 〉. Thus y can be written in the form

y = ax +
∑

p∈P a(p)p for some properly chosen a ∈ N and a(p) ∈ N0. It

follows that x ≤P y, as desired.

Corollary 9. If gcd(P ) > 1 and k = 1 + |P |, then TD(〈P 〉,LINSETk) =∞.

Proof. According to Lemma 7, N \ 〈P 〉 contains an infinite ascending chain
x1 <P x2 <P x3 <P . . .. According to the second assertion in Lemma 8, a
teaching set for 〈P 〉 must contain infinitely many elements of this chain.

Corollary 10. If gcd(P ) = 1, then the set T (P ) given by T (P )+ = P and
T (P )− = MAXP is the unique smallest teaching set for 〈P 〉 w.r.t. LINSET.

Proof. Suppose that 〈H〉 is consistent with T (P ). We show that 〈H〉 = 〈P 〉
(implying that T (P ) is a teaching set for 〈P 〉). Since P ⊆ 〈H〉 (by consistency),
it follows that 〈P 〉 ⊆ 〈H〉. Pick an arbitrary but fixed element x from N \ 〈P 〉.
Recall that N \ 〈P 〉 is finite. Thus, by the definition of MAXP , there must exist
an element y ∈ MAXP such that x ≤P y. From x ≤P y and 〈P 〉 ⊆ 〈H〉, we may
conclude that x ≤H y. The number y ∈ MAXP cannot belong to 〈H〉 (because
〈H〉 is consistent with T (P )). Now, x ≤H y implies that x /∈ 〈H〉. Thus, 〈H〉
does not contain any element outside 〈P 〉. It follows that 〈P 〉 = 〈H〉. Thus,
T (P ) is a teaching set for 〈P 〉 w.r.t. LINSET, indeed. According to Lemma 8,
any other teaching set must contain T (P ) as a subset.

Remark 11. If T is a teaching set for L′ ⊆ Nm
0 w.r.t. L, then for any c ∈ Nm

0 ,
c+ T = {(c+ x,+) : x ∈ T+} ∪ {(c+ y,−) : y ∈ T−} is a teaching set for c+L′

w.r.t. L[n] = {c+ L : L ∈ L}. Thus Lemma 8 and Corollaries 9 and 10 may be
readily generalised, mutatis mutandis, to the class LINSET[c] = {c + L : L ∈
LINSET} for any c ∈ N0.

The proof of [8, Theorem 6] provides a construction that may be slightly
modified to show that TD(LINSET1) =∞ even though TD(〈q〉,LINSET1) <∞
for any q > 0. By the monotonicity of TD, TD(LINSET) = TD(LINSETk) =∞
for all k > 0.

By Corollary 9, LINSET contains infinitely many members that have an
infinite TD w.r.t. LINSET. Thus for any L ⊆ LINSET, it may be difficult to
interpret a value of∞ for TD(L): (1) on the one hand, all cofinite subclasses of L
may have an infinite TD w.r.t. L; (2) on the other hand, there may be a cofinite
subclass of L that has a finite TD w.r.t. L. Intuitively, it seems that L in Case
(2) is unteachable in a weaker sense than in Case (1), but the TD makes no such
distinction. It shall be shown, however, that the RTD is a bit more well-behaved
when applied to LINSET. In particular, for all L ⊂ LINSET, RTD(L,LINSET)
grows only linearly with sup{min(P ) : 〈P 〉 ∈ L ∧ min(P ) > 0}. We will also
give a finer analysis of LINSETk for k ∈ {1, 2, 3}, showing that while LINSET2

does not have any positive teaching sequence, RTD(LINSETk) < ∞ for k ∈
{1, 2, 3}. In addition, RTD(LINSETk) grows at least linearly in k, implying that
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RTD(LINSET) = ∞. The question of whether RTD(LINSETk) < ∞ for any
k > 3 remains open.

First, the following proposition explains why the singleton {0} was excluded
from the definition of LINSET. The proof is quite similar to that of Proposition
21, which will be proven later.

Proposition 12. RTD({{0}}, {{0}} ∪ LINSET1) =∞.

Proposition 12 should be contrasted with the observation that RTD(LINSE-
T1) = 1: ((〈1〉, 1), (〈2〉, 1), . . .) is a teaching plan with positive examples for
LINSET1, where the ith linear set in the plan is 〈i〉 and {(i,+)} is a teaching set
for 〈i〉 w.r.t. {〈j〉 : j ≥ i}. The next theorem shows on the other hand that for
any finite L ⊂ LINSET, RTD(L,LINSET) < ∞; in fact, for any L ⊂ LINSET,
RTD(L,LINSET) is at most linear in sup{min(P ) : 〈P 〉 ∈ L ∧min(P ) > 0}.

Theorem 13. Let Fn = {〈P 〉 : P is independent ∧ min(P ) ≤ n}. Then
RTD(Fn,LINSET) ≤ 2n− 1.

Proof. (Sketch.) To streamline the proof, we will adopt some graph terminology.
Let L = LINSET. Let L 7→ T (L) be a mapping that assigns a set of labelled
examples to every L ∈ L. Define the digraph induced by T as the graph G =
(VG, AG), where the nodes of G are identified with the members L of L, i.e.,
VG = L, and a pair (L′, L) ∈ L × L is included in AG iff L′ is consistent with
T (L). Define the depth of a node v in a digraph as the length of the longest
path ending in v (or as ∞ if the paths ending in v can become arbitrarily long).
Say that the mapping L 7→ T (L) with L ranging over all members of L is RTD-
admissible for L if the digraph G induced by T is acyclic and every node in G
has a finite depth.

We shall use the following two facts (proofs omitted due to space constraints):
(1) there exists a partition of L into L0,L1, . . . such that, for all i and all L ∈ Li,
it holds that T (L) is a teaching set for L w.r.t.

⋃
j≥i Lj iff T is RTD-admissible;

(2) if P = {p1, . . . , pk} ⊆ N0 is independent, p1 = min(P ) and d = gcd(P ), then
k = |P | ≤ p1 and |MAXP | ≤ p1 − 1.

Let P range over finite independent subsets of N0. We shall show that the
mapping 〈P 〉 7→ T (〈P 〉) given by T (〈P 〉)+ = P and T (〈P 〉)− = MAXP is RTD-
admissible for L. It suffices to show that the digraph G = (L, A) induced by
the mapping 〈P 〉 7→ T (〈P 〉) is acyclic and every node 〈P 〉 ∈ L has a finite
depth. Suppose that (

〈
P ′
〉
, 〈P 〉) ∈ A. It follows from the construction of G that〈

P ′
〉

is consistent with T (〈P 〉). The consistency with T (〈P 〉)+ = P implies that
d′ = gcd(P ′) is a divisor of d = gcd(P ). It suffices to show that d′ is a proper
divisor of d since this implies that G is acyclic and that the depth of 〈P 〉 is
bounded by the number of prime power divisors of d = gcd(P ). Suppose for sake
of contradiction that d′ = d so that

〈
P ′
〉
, 〈P 〉 ⊆ d · N0. Now we may argue as

follows. Since (
〈
P ′
〉
, 〈P 〉) ∈ A, the two linear sets do not coincide so that we may

pick a point u from their symmetric difference. Since both linear sets are subsets
of d ·N0, there exists u′ ∈ N such that u = du′. But then u′ is in the symmetric
difference of (1/d)

〈
P ′
〉

and (1/d)〈P 〉. On the other hand, since
〈
P ′
〉

is consistent
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with T (〈P 〉), it follows that (1/d)
〈
P ′
〉

is consistent with (1/d)P labelled “+” and
(1/d)MAXP = MAX(1/d)P labelled “−”. According to Corollary 10, (1/d) · P
labelled “+” and MAX(1/d)P labelled “−” is a teaching set for (1/d)〈P 〉 w.r.t. L,
a contradiction.

Finally, observe that from Facts (1), (2), the RTD-admissibility of T for L,
and the condition that min(P ) ≤ n for all 〈P 〉 ∈ Fn with P independent, one
can find a teaching subsequence for L covering Fn such that the order of this
teaching subsequence is at most n+ (n− 1) = 2n− 1.

Theorem 15 (to be shown later) will imply that the order of any teaching
sequence for LINSET must necessarily be infinite. Nonetheless, the preceding
theorem shows roughly that the growth of RTD(L,LINSET) with L is relatively
modest if the minimum positive periods of all L ∈ L vary only linearly.

The next series of results will present a detailed study of CF–LINSETk for
each k and CF–LINSET, which comprises all linear sets 〈P 〉 such that P (6= ∅)
is a finite subset of N and and gcd(P ) = 1. By Proposition 6, this is precisely
the class of cofinite linear subsets of N0 with constant 0. Since LINSETk is a
union of classes of linear sets, each of which is isomorphic to CF–LINSETk, it is
hoped that investigating the teaching complexity of CF–LINSETk may lead to
some insights into the question of whether RTD(LINSETk) is finite for each k.
CF–LINSET is also perhaps interesting in its own right: on the one hand, the
teaching dimension of CF–LINSETk is finite for k ≤ 3 but infinite for k ≥ 5; on
the other hand, for all k, CF–LINSETk has a relatively simple teaching sequence
that gives it an RTD+ of k. The first result gives an almost complete analysis
of TD(CF–LINSETk) for all k; the case k = 4 is left open.

Theorem 14. (i) TD(CF–LINSET1) = 0;
(ii) TD(CF–LINSET2) = 3;
(iii) TD(CF–LINSET3) = 5;
(iv) for each k ≥ 5, TD(CF–LINSETk) =∞.

Proof. The proofs of Assertions (III) and (IV) are quite long and will be omit-
ted. Assertion (I). Note that CF–LINSET1 = {〈1〉}. The empty set is a teaching
set for 〈1〉 w.r.t. CF–LINSET1.

Assertion (II). We first prove the upper bound. Note that N0 is the only
member of CF–LINSET2 that is generated by one number. {(1,+)} is a teaching
set for N0 w.r.t. CF–LINSET2, and so TD(N0) = 1. Now consider L = 〈p1, p2〉,
where gcd(p1, p2) = 1. We claim that T = {(p1,+), (p2,+), (p1p2 − p1 − p2,−)}
is a teaching set for L w.r.t. CF–LINSET2. Note that F (p1, p2) = p1p2− p1− p2
(see, for example, [10]), and so the labelling of T is consistent with L. For any
L′ ∈ CF–LINSET2 such that {p1, p2} ⊆ L′, it must hold that L′ ⊆ L. Suppose
further that L′ 6= L, and take any p3 ∈ L′ − L. Then there exists some k with
0 ≤ k ≤ p1 − 1 such that p3 ≡ kp2 (mod p1). Since p3 /∈ L, this means that
for some m ≥ 1, p3 = kp2 − mp1. As p1p2 − p1 − p2 = kp2 − mp1 + (m −
1)p1 + (p1 − k − 1)p2 = p3 + (m − 1)p1 + (p1 − k − 1)p2 ∈ 〈p1, p2, p3〉 ⊆ L′, it
follows that p1p2 − p1 − p2 ∈ L′, and so T cannot be consistent with L′. Hence
TD(CF–LINSET2) ≤ 3.
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For the lower bound, choose primes p1, p2, p3 such that 2 < p1 < p2 < p3.
Note that 〈2, p1p2p3〉 ( 〈2, p1p2〉 ( 〈2, p1〉 is a chain in CF–LINSET2. Thus if
T is any teaching set for 〈2, p1p2〉 w.r.t. CF–LINSET2 such that |T | ≤ 2, then
T must contain exactly one positive example (x1,+) and exactly one negative
example (x2,−). Choose any prime p > max({x1, x2, 2, p1p2}). Then 〈x1, p〉 is
consistent with T but 〈2, p1p2〉 6= 〈x1, p〉. Hence |T | ≥ 3.

Theorem 15. For all k ≥ 1, RTD(CF–LINSETk) ∈ {k−1, k} and RTD+(CF–
LINSETk) = k. Moreover, RTD(CF–LINSET2) = 2.

Proof. (Sketch.) We prove RTD+(CF–LINSETk) = k. First, a teaching plan
with positive examples for CF–LINSETk is constructed. Let 〈P0〉, 〈P1〉, . . . be
a one-one enumeration of CF–LINSETk such that for all i, j with i < j, Pi is
independent and 〈Pi〉 6⊆ 〈Pj〉. Such an enumeration exists because for each 〈P 〉 ∈
CF–LINSETk, there are only finitely many

〈
P ′
〉
∈ CF–LINSETk such that

〈P 〉 ⊆
〈
P ′
〉
, which implies that there are only finitely many chains C1, . . . such

that 〈P 〉 is the least member (with respect to set inclusion) of each Cl, and each of
these chains has finite length. Let Q be the teaching plan ((〈P0〉, S0), (〈P1〉, S1),
(〈P2〉, S2), . . .) where, for each Pi, Si = {(p,+) : p ∈ Pi}. Since 〈Pi〉 6⊆

〈
Pj

〉
for

all j > i, Si is a teaching set for 〈Pi〉 w.r.t. {〈Pj〉 : j ≥ i}. Further, as |Si| ≤ k
for all i, Q is a teaching plan for CF–LINSETk of order at most k.

Now it is shown that RTD+(CF–LINSETk) ≥ k. Let P = {k, k+ 1, . . . , 2k−
1}, and consider the class Ck = {H ∈ CF–LINSETk : H ⊆ 〈P 〉}. For any positive
teaching sequence Q′ of Ck, 〈P 〉 must be contained in the first nonempty subclass
of Ck removed. If 〈P 〉 has a teaching set with positive examples S (w.r.t. the
subclass of linear sets in Ck that do not occur before 〈P 〉 in Q′) such that |S| ≤
k − 1, then 〈X(S)〉 is a proper subset of 〈P 〉 that is consistent with S; further,
there exists some prime p /∈ X(S) such that

〈
X(S) ∪ {p}

〉
∈ CF–LINSETk and〈

X(S) ∪ {p}
〉
( 〈P 〉. Hence |S| ≥ k. This proves that RTD+(CF–LINSETk) ≥

RTD+(Ck) ≥ k. We skip the proof that RTD(CF–LINSET2) = 2.
The construction that witnesses RTD(CF–LINSETk) ≥ k − 1 is based on

a hitherto unpublished proof [4]. For each k, let Lk = {〈k, p1, . . . , pk−1〉 : ∀i ∈
{1, . . . , k − 1}[pi ∈ {k + i, 2k + i}]}. One can show that RTD(CF–LINSETk) ≥
RTD(Lk) ≥ min({TD(L,Lk) : L ∈ Lk}) ≥ k − 1.

Corollary 16. TD(CF–LINSET) = RTD(CF–LINSET) = RTD+(CF–LINS-
ET) = RTD(LINSET) =∞.

For each k ∈ {1, 2, 3}, the result on TD(CF–LINSETk) may be directly
applied to construct a teaching sequence of finite order for LINSETk.

Theorem 17. (i) LINSET2 does not have any positive teaching sequence.
(ii) RTD+(LINSET1) = RTD(LINSET1) = 1, RTD(LINSET2) = 3 and 3 ≤

RTD(LINSET3) ≤ 5.

Proof. Assertion (I). Let p1, p2, p3, . . . be a strictly increasing infinite sequence
of primes with p1 > 2. Note that for all j, 〈2〉 ( 〈2, p1 . . . pj〉. Further, 〈2, p1〉 )
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〈2, p1p2〉 ) 〈2, p1p2p3〉 ) . . . ) 〈2, p1 . . . pj〉 ) 〈2, p1 . . . pjpj+1〉 ) . . . is an
infinite descending chain in LINSET2. Thus by Proposition 5, LINSET2 does
not have a positive teaching sequence.

Assertion (II). (Sketch.) We had described earlier (after Proposition 12) a
teaching plan with positive examples of order 1 for LINSET1. Here, a teaching
sequence for LINSET2 of order no more than 3 is given; a teaching sequence for
LINSET3 can be constructed analogously using teaching sets of size at most 5 for
linear sets in CF–LINSET3. Define the sequence ((L0, d0), (L1, d1), . . .) where,
for all i ∈ N0, Li = {〈p1, p2〉 : p1, p2 ∈ N ∧ gcd(p1, p2) = i + 1}. Consider any
〈p1, p2〉 ∈ Li. The proof of Assertion (II) in Theorem 14 gives a teaching set

T of size no more than 3 for
〈

p1

i+1 ,
p2

i+1

〉
w.r.t. CF–LINSET2. Now let T ′ =

{((i+ 1)x,+) : x ∈ T+} ∪ {((i+ 1)y,−) : y ∈ T−}. Note that since T ′ contains
the two positive examples (p1,+), (p2,+) and gcd(p1, p2) = i + 1, no linear set
〈P 〉 ∈ LINSET2 with gcd(P ) > i+ 1 can be consistent with T ′. Moreover, T ′ is
a teaching set for 〈p1, p2〉 w.r.t. all 〈P 〉 ∈ LINSET2 with gcd(P ) = i+ 1. Hence
di ≤ 3 for all i ∈ N0. We omit the proof that RTD(LINSET2) ≥ 3.

4 Linear Subsets of N0 With Bounded Period Sums

The present section will examine a special family of linear subsets of N0 that
arises from studying an invariant property of the class of non-erasing pattern
languages over varying unary alphabets. Recall that the commutative image, or
Parikh image, of w ∈ {a}∗ is the number of times that a appears in w, or the
length of w. Thus the commutative image of the language generated by a non-
erasing pattern ak0xk1

1 . . . xkn
n is the linear subset (k0+k1+. . .+kn)+〈k1, . . . , kn〉

of N0, which is in NE–LINSET. Conversely, any L ∈ NE–LINSET is the com-
mutative image of a non-erasing pattern language. This gives a one-to-one cor-
respondence between the class of non-erasing pattern languages and the class
NE–LINSET, so that the two classes have equivalent teachability properties.
The following theorem gives the exact value of RTD+(NE–LINSETk).

Theorem 18. RTD+(NE–LINSETk) = k + 1.

Proof. (Sketch.) Note that as NE–LINSETk has finite thickness and ∅ /∈ NE–LI-
NSETk, Proposition 4 implies that NE–LINSETk has a teaching plan with
positive examples. RTD+(NE–LINSETk) ≤ k + 1 is shown. A teaching plan
Q for NE–LINSETk is built in stages as follows. Let Qc denote the segment
of Q that has been defined up to stage c and let Ac denote the class of all
L ∈ NE–LINSETk such that Qc does not contain L. It is assumed inductively
that Ac does not contain any linear subset of N0 with constant less than c.
The idea of the construction is to design a teaching plan for the finite subclass
P 0
c = {c+ 〈p1, . . . , pk〉 : p1 + . . .+ pk ≤ c} at stage c.

Inductively, assume that P g
c has been defined for some g ≥ 0. If P g

c = ∅, then
the teaching plan for P 0

c is complete. Otherwise, suppose that P g
c is nonempty.

Choose c+〈p1, . . . , pk〉 ∈ P g
c , the next linear set to be taught in the teaching plan
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for P 0
c , so that c+〈p1, . . . , pk〉 is maximal in P g

c with respect to the subset inclu-
sion relation. Set P g+1

c = P g
c \ {c+ 〈p1, . . . , pk〉}. We claim that S = {(c,+)} ∪

{(c+pi,+) : 1 ≤ i ≤ k} is a teaching set for c+ 〈p1, . . . , pk〉 w.r.t. P g
c ∪ (Ac \P 0

c ).
Assume that {c}∪ {c+ ai : 1 ≤ i ≤ k} ⊆ c′+ 〈b1, . . . , bl〉 ∈ P g

c ∪ (Ac \P 0
c ). Since

Ac does not contain any linear subset of N0 with constant less than c, c′ = c and
so c′+〈b1, . . . , bl〉 ∈ P g

c . Then for all i ∈ {1, . . . , k}, ai =
∑l

i=1 qibi for some non-
negative integers q1, . . . , ql, and therefore c + 〈a1, . . . , ak〉 ⊆ c + 〈b1, . . . , bl〉. By
the maximality of c+ 〈a1, . . . , ak〉, one has c+ 〈a1, . . . , ak〉 = c+ 〈b1, . . . , bl〉. The
construction continues until a stage g′ is reached where P g′

c = ∅. Qc+1 is then
defined as the concatenation of Qc and the teaching plan for P 0

c (with Qc as the
prefix). We omit the somewhat long proof that RTD+(NE–LINSETk) ≥ k+1.

The lower bound on RTD(NE–LINSETk) in the following theorem may be
obtained by adapting the proof of the corresponding result for CF–LINSETk;
the proof of [8, Theorem 6] immediately implies that TD(NE–LINSETk) =∞.

Theorem 19. For all k ≥ 1, k − 1 ≤ RTD(NE–LINSETk) ≤ k + 1 and
TD(NE–LINSETk) =∞.

Remark 20. Our results on NE–LINSET may be generalised to classes of linear
subsets of Nm

0 for any m > 1 in the following way. For each m, define

(i) NE–LINSETm
k := {c+ 〈P 〉 : c ∈ Nm

0 ∧ P ⊂ Nm
0 ∧ |P | ≤ k ∧ ‖

∑
p∈P p‖1 ≤

‖c‖1}.
(ii) NE–LINSETm :=

⋃
k∈N NE–LINSETm

k .

Note that NE–LINSET1
k = NE–LINSETk and NE–LINSET1 = NE–LINS-

ET. Then one has RTD+(NE–LINSETm
k ) = RTD+(NE–LINSETk) = k+ 1, k−

1 ≤ RTD(NE–LINSET1
k) ≤ RTD(NE–LINSETm

k ) and RTD(NE–LINSETm) =
RTD(NE–LINSET) = RTD+(NE–LINSETm) = RTD+(NE–LINSET) =∞.

5 Linear Subsets of N2
0 With Constant 0

Finally, we consider how our preceding results may be extended to general classes
of linear subsets of higher dimensions. Finding teaching sequences for families
of linear sets with dimension m > 1 seems to present a new set of challenges, as
many of the proof methods for the case m = 1 do not carry over directly to the
higher dimensional cases. The classes of linear subsets of N2

0 briefly studied in
this section are denoted as follows. In the first definition, k ∈ N.

(i) LINSET2
k := {〈P 〉 : P ⊂ N2

0 ∧ ∃p ∈ P [p 6= 0] ∧ |P | ≤ k}.
(ii) LINSET2

=2 := LINSET2
2 \ LINSET2

1.

The following result suggests that to identify interesting classes of linear
subsets of Nm

0 for m > 1 that have finite teaching complexity measures, it might
be a good idea to first exclude certain linear sets.

Proposition 21. RTD({
〈
(0, 1)

〉
},LINSET2

2) =∞.
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Proof. Assume that R = ((L0, d0), (L1, d1), . . .) were a teaching subsequence for
LINSET2

2 covering {
〈
(0, 1)

〉
}. Suppose that 〈(0, 1)〉 ∈ Li and T were a teaching

set for 〈(0, 1)〉 w.r.t. LINSET2
2\
⋃

j<i Lj . Choose any N > max({dj : j < i}) such

that N is larger than every component of any instance (a, b) ∈ N2
0 in T . Further,

let p0, . . . , pN+i be a strictly increasing sequence of primes. Observe that by the
choice of N , 〈(0, 1), p0 . . . pN+i(1, 1)〉 is consistent with T . Hence this linear set
occurs in some Lj0 with j0 < i. In addition, since, for any two distinct (N + i)-
subsets S, S′ of {p0, . . . , pN+i}, 〈(0, 1), p0 . . . pN+i(1, 1)〉 ( 〈(0, 1),

∏
x∈S x(1, 1)〉

and 〈(0, 1),
∏

x∈S x(1, 1)〉 ∩ 〈(0, 1),
∏

x∈S′ x(1, 1)〉 ⊆ 〈(0, 1), p0 . . . pN+i(1, 1)〉, the
choice of N again gives that for some (N + i)-subset S1 of {p0, . . . , pN+i},
〈(0, 1),

∏
x∈S1

x(1, 1)〉 ∈ Lj1 for some j1 < j0. The preceding line of argu-
ment can be applied again to show that for some (N + i − 1)-subset S2 of
S1, 〈(0, 1),

∏
x∈S2

x(1, 1)〉 ∈ Lj2 for some j2 < j1. Repeating the argument suc-
cessively thus yields a chain S1 ) S2 ) . . . ) Si of subsets of {p0, . . . , pN+i}
such that 〈(0, 1),

∏
x∈Sl

x(1, 1)〉 ∈ Ljl for all l ∈ {1, . . . , i}, where ji < . . . < j1 <
j0 < i, which is impossible as ji ≥ 0. Hence there is no teaching subsequence of
LINSET2

2 covering {
〈
(0, 1)

〉
}.

One can define quite a meaningful subclass of LINSET2
2 that does have a

finite RTD. LINSET2
=2 consists of all linear sets in LINSET2

2 that are strictly
2-generated. Examples of strictly 2-generated linear subsets include 〈(1, 0), (0,
1)〉 and 〈(4, 6), (6, 9)〉. 〈(0, 1)〉 is not a strictly 2-generated linear subset.

Theorem 22. (i) TD(LINSET2
=2) =∞.

(ii) LINSET2
=2 does not have any positive teaching sequence.

(iii) RTD(LINSET2
=2) ∈ {3, 4}.

Proof. Assertion (I). Observe from the proof of Proposition 21 that for any N
distinct primes p0, p1, . . . , pN−1, TD(

〈
(0, 1), p0p1 . . . pN−1(1, 0)

〉
,LINSET2

=2) ≥
N . Hence TD(L,LINSET2

=2) =∞ for any cofinite subclass L of LINSET2
=2.

Assertion (II). Let p1, p2, p3, . . . be a strictly increasing infinite sequence
of primes. Note that for all j,

〈
(2, 0), (3, 0)

〉
(
〈
(1, 0), p1 . . . pj(0, 1)

〉
. Further,

〈(1, 0), p1(0, 1)〉 ) 〈(1, 0), p1p2(0, 1)〉 ) 〈(1, 0), p1p2p3(0, 1)〉 ) . . . ) 〈(1, 0), p1
. . . pj(0, 1)〉 ) 〈(1, 0), p1 . . . pjpj+1(0, 1)〉 ) . . . is an infinite descending chain in
LINSET2

=2. Thus by Proposition 5, LINSET2
=2 does not have a positive teaching

sequence.
Assertion (III). (Sketch.) The main idea is that for each strictly 2-generated

linear subset S of N2
0 with canonical representation (0, P ), if M denotes the

class of all S′ ∈ LINSET2
=2 for which each S′ ∈M with canonical representation

(0, P ′) satisfies ‖
∑

p′∈P ′ p′‖1 ≥ ‖
∑

p∈P p‖1, then TD(S,M) ≤ 4. The sequence
((L0, d0), (L1, d1), . . .) defined by Li = {〈u1, u2〉 : ‖u1 + u2‖1 = i + 2} would
then be a teaching sequence for LINSET2

=2 of order at most 4. To prove this
assertion, it suffices to find a teaching set of size at most 4 for any 〈u1, u2〉 w.r.t.
the class of all S′ ∈ LINSET2

=2 such that if S′ has the canonical representation
(0, P ′), then ‖

∑
p′∈P ′ p′‖1 ≥ ‖u1 + u2‖1.

Owing to space constraints, we will only give a proof for the case when
{u1, u2} is linearly independent. For a given linear set L with canonical repre-
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·

u1

u2

p1

p2

Fig. 1. p1 and p2 (not drawn to scale)

sentation (c, P ), call each p ∈ P a minimal period of L. Assume that u1 lies to
the left of u2. Consider the set A of linear sets L in M such that 〈u1, u2〉 ( L.
Since no single vector in N2

0 can generate two linearly independent vectors in
N2

0, each L ∈ A must have two linearly independent periods p1 and p2, neither
of which lies strictly between u1 and u2; in addition, max({‖p1‖1, ‖p2‖1}) ≤
max({‖u1‖1, ‖u2‖1}). Thus A is finite. Furthermore, for each L ∈ A with canon-
ical representation (0, P ′), at least one of the periods in P ′ is not parallel to u1
and also not parallel to u2, for otherwise ‖

∑
p′∈P ′ p′‖1 < ‖u1 + u2‖1. If A = ∅,

then {(u1,+), (u2,+)} is a teaching set for 〈u1, u2〉 w.r.t. M . Assume that A 6= ∅.
Consider the set Q =

⋃
L∈A{w : w is a minimal period of L not parallel to u1

and not parallel to u2}. Choose some p1 among the periods in Q that are clos-
est to u1 to the left of u1, and choose p2 so that p2 is among the periods in
Q that are closest to u2 to the right of u2 (see Figure 1); note that at least
one of p1, p2 exists. For every L ∈ A with canonical representation (0, {v1, v2}),
at least one of p1 and p2 lies between (not necessarily strictly) v1 and v2, and
{kp1, k′p2}∩〈u1, u2〉 = ∅ for all k, k′ ∈ N. Thus there is a sufficiently large K ∈ N
such that for all L ∈ A, either Kp1 ∈ L\〈u1, u2〉 or Kp2 ∈ L\〈u1, u2〉. Therefore
a teaching set for 〈u1, u2〉 w.r.t. M is {(u1,+), (u2,+), (Kp1,−), (Kp2,−)}. If pi
does not exist for exactly one i, then remove (Kpi,−) from this teaching set.

6 Conclusion

We have studied two main teaching parameters, the TD and RTD (and its variant
RTD+), of classes of linear sets with a fixed dimension. Notice that in Table
1, even though all the classes have an infinite TD, there are finer notions of
teachability that occasionally yield different finite sample complexity measures.
In particular, there are families of linear sets that have an infinite TD and RTD+

and yet have a finite RTD. We broadly interpret a class that has an infinite RTD
as being “unteachable” in a stronger sense than merely having an infinite TD.
Quite interestingly, the fact that some classes in Table 1 have an infinite RTD
contrasts with Takada’s [12] theorem that the family of linear subsets of Nm

0 is
learnable in the limit from just positive examples. One possible interpretation of
this contrast is that classes of linear sets may be generally harder to teach than
to learn. Further, a number of quantitative problems remain open. For example,
we did not solve the question of whether RTD(LINSETk) is finite for each k > 3.
A more precise analysis of the values of RTD for various families of linear sets
studied in the present paper (see Table 1) would also be desirable.
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Class TD RTD RTD+

CF–LINSETk, k ≥ 5 ∞ (Thm 14(IV)) RTD ∈ {k − 1, k} (Thm 15) k (Thm 15)

LINSET1 ∞ (Rem 11) 1 (Thm 17(II)) 1 (Thm 17(II))

LINSET2 ∞ (Rem 11) 3 (Thm 17(II)) ∞ (Thm 17(I))

LINSET3 ∞ (Rem 11) RTD ∈ {3, 4, 5} (Thm 17(II)) ∞ (Thm 17(I))

LINSET ∞ (Rem 11) ∞ (Cor 16) ∞ (Thm 17(I))

NE–LINSETm
k ,m, k ≥ 1 ∞ (Rem 20) RTD ∈ {k − 1, k, k + 1} (Rem 20) k + 1 (Rem 20)

NE–LINSETm,m ≥ 1 ∞ (Rem 20) ∞ (Rem 20) ∞ (Rem 20)

LINSET2
=2 ∞ (Thm 22) RTD ∈ {3, 4} (Thm 22) ∞ (Thm 22)

Table 1. Partial summary of results.
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