
DFAs with a Bounded Activity Level

Marius Konitzer and Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum
{marius.konitzer,hans.simon}@rub.de

Abstract. Lookahead DFAs are used during parsing for sake of resolving
conflicts (as described in more detail in the introduction). The parsing
of an input string w may require many DFA-explorations starting from
different letter positions. This raises the question how many of these
explorations can be active at the same time. If there is a bound on this
number depending on the given DFA M only (i.e., the bound is valid
for all input strings w), we say that M has a bounded activity level. The
main results in this paper are as follows. We define an easy-to-check
property of DFAs named prefix-cyclicity and show that precisely the non
prefix-cyclic DFAs have a bounded activity level. Moreover, the largest
possible number `M of mutually overlapping explorations of a given non
prefix-cyclic DFA M with t+1 states, the so-called maximum activity level
of M , is bounded from above by 2t − 1, and this bound is tight. We show
furthermore that the maximum activity levels of equivalent DFAs coincide
so as to form an invariant of the underlying regular language, which leads
us to a characterization of prefix-cyclicity in terms of the Nerode relation.
We finally establish some complexity results. For instance, the problem
of computing `M for a given non prefix-cyclic DFA M is shown to be
PSPACE-complete.

Key words: parsing, lookahead DFA, computational complexity

1 Introduction

LR-regular (LRR) parsing [12] is one of the few parsing techniques utilizing
unbounded lookahead. LRR languages properly include the deterministic context-
free languages [7]. LRR parsers allow for a large amount of interesting grammars
with practical relevance (such as the original version of the Java language [6]),
which cannot be handled by any LR(k) parser. The parsers generated with
the algorithm from [12] clearly have linear runtime, although they are a little
cumbersome. The algorithm is rather of theoretical interest as membership in the
class of LR-regular grammars is undecidable and as some implementation details
remain unclear. Practical LRR parsing techniques such as [1] and [4] basically
work like the well-known LR(k) shift-reduce parsers [7], yet use regular lookaheads
of arbitrary length instead of the normal fixed length ones. Starting with an
inconsistent LR(0) automaton, practical LRR parser generation techniques set
out to build disjoint prefix-free regular envelopes for each inconsistent LR(0)
state. This aims at separating the state’s conflicting suffix languages from each

2 M. Konitzer and H. Simon

other. These regular envelopes are typically built as prefix-free deterministic
finite automata (DFA), so called lookahead DFAs, which are used for lookahead
exploration during parsing whenever necessary. Different lookahead explorations
operating on a common substring of the input string may overlap each other. As
explained in the abstract (and formally defined in section 2), this leads to the
notion of the maximum activity level `M associated with a given DFA M (set to
∞ in the unbounded case).

If the number of mutually overlapping explorations on strings of length n
is bounded from above by B ≤ n, the whole parser has time bound O(Bn) on
inputs of length n (as illustrated in Fig. 1). If the parser employs prefix-cyclic
DFAs, this leads to the time bound O(n2).2 If, however, only non prefix-cyclic
lookahead DFAs are employed during parsing, then B does not depend on n (but
still depends on the sizes of the lookahead DFAs).3 As for of a fixed LR-regular
grammar with a fixed collection of non prefix-cyclic lookahead DFAs, one may
think of B as a (possibly large) constant. But once we think in terms of practical
LRR parser generators, the dependence on the sizes of the employed lookahead
DFAs becomes an issue.

1 2 3 4 5 6 7 8 9

in an input string

letter positions

exploration 1

exploration 2

exploration 3

snapshot with activity level 3

Fig. 1. The parser and all of the B = 3 DFA-explorations require up to n computational
steps, respectively.

The notion of prefix-cyclicity (among other related notions) was introduced
and exploited in [8]. However, the run time analysis in [8] treats the parameter
B as a constant whenever it does not depend on n. In this paper, we take care of
the dependence of B on the sizes of the employed lookahead DFAs and study the
dependence of `M on the number t of M ’s non-initial states. We extend the work
in [8] in various directions. Section 3 presents the (tight) upper bound 2t − 1
on `M . Section 4 casts `M as an invariant of the underlying language L(M).
Section 5 characterizes prefix-cyclicity in terms of the Nerode-relation. Section 6
is devoted to complexity issues. Specifically, it is shown that the computation of
`M for a given non prefix-cyclic DFA M is PSPACE-complete.

2 An LRR-grammar leading indeed to quadratic run time for parsing with (unbounded)
lookahead DFAs is found in [10].

3 See [8] for several grammar constructs leading to non prefix-cyclic lookahead DFAs
(e.g. HTML forms [4] and Ada calls [2, 10]).

DFAs with a Bounded Activity Level 3

2 Definitions and Notations

Let M be a Deterministic Finite Automaton (DFA) given by its finite set
of states, Q, its input alphabet, Σ, its partially defined transition function
δ : Q×Σ → Q, and its initial state q0 ∈ Q. (For the time being, we do not need
to distinguish between accepting and non-accepting states.) If M reads symbol a
in state q and δ(q, a) is undefined, then we may think of M as terminating its
computation. As usual, the mapping δ can be extended to a partially defined
mapping δ∗ : Q×Σ∗ → Q:

δ∗(q, ε) = q

δ∗(q, aw) =

{
undefined if δ(q, a) is undefined
δ∗(δ(q, a), w) otherwise

Here, ε denotes the empty string, q ∈ Q, a ∈ Σ, and w ∈ Σ∗. If not undefined,
then δ∗(q, w) is the state reached by a computation of M that was started in
state q and has processed all letters of w. We say that w is fully processed by
M if δ∗(q0, w) is not undefined. Suppose that w = a1 · · · an ∈ Σn. Then, for all
1 ≤ i < j ≤ n, wi,j denotes the substring ai · · · aj−1. We say that M has activity
level ` at position j of input w if there exist 1 ≤ i1 < . . . < i` < j such that, for
all l = 1, . . . , `, wil,j is fully processed by M . We say that M has an unbounded
activity level if for any ` ≥ 1 there is a string w and a letter position j such that
M has activity level ` at position j of input w. We define `M =∞ if M has an
unbounded activity level, and as the highest possible activity level otherwise.
Note that `M represents the largest possible number of mutually overlapping
explorations when M is used as a lookahed DFA as described in Section 1.

3 DFAs with a Bounded Activity Level

Section 3.1 characterizes DFAs with an unbounded activity level: exactly the
“prefix-cyclic” DFAs M are the ones with `M =∞. In Section 3.2, it is shown that
`M ≤ 2t−1 for any non prefix-cyclic DFA with t+1 states. It is furthermore shown
that there exists a non prefix-cyclic DFA M with t+ 1 states and `M = 2t − 1
(so that the general upper bound is tight).

3.1 Characterization of DFAs with an Unbounded Activity Level

A DFA M = (Q,Σ, δ, q0) with a partially defined transition function δ is said to
be prefix-cyclic if it satisfies the following condition:

∃q ∈ Q,∃w ∈ Σ+ : δ∗(q0, w) = q = δ∗(q, w) (1)

DFAs with an unbounded activity level can be characterized as follows:

Theorem 1 ([8]). A DFA M is prefix-cyclic iff it has an unbounded activity
level.

4 M. Konitzer and H. Simon

Proof. If M is prefix-cyclic as witnessed by q ∈ Q and w ∈ Σ+, then the strings
(w`)`≥1 and the letter positions il = 1 + (l − 1)|w| for l = 1, . . . , ` witness that
M has an unbounded activity level.
Suppose now that M has an unbounded activity level. Let ` ≥ 1 be a sufficiently
large number whose precise definition is given below. Pick a string w and letter
positions 1 ≤ i1 < . . . < i` < j which witness that `M ≥ `. Let K` denote
the complete graph with ` nodes. Consider the edge-coloring of K` where each
edge {l, l′} such that l < l′ is colored δ∗(q0, wil,il′). Note that this coloring uses
t := |Q| colors. Let r(3, t) denote the smallest number of nodes of a complete
graph such that any t-coloring of its edges leads to at least one monochromatic
triangle.4 It is well-known [5, 3, 11] that

2t < r(3, t) < 1 +
e− e−1 + 3

2
· t! < 3t! .

Let now ` := r(3, t) < 3t!. Then, with the coloring defined above (as for any
t-coloring), K` has at least one monochromatic triangle. By construction of the
coloring, this means that there exist 1 ≤ l < l′ < l′′ < j such that δ∗(q0, wil,il′) =
δ∗(q0, wil,il′′) = δ∗(q0, wil′ ,il′′). Setting q := δ∗(q0, wil,il′), we obtain

δ∗(q, wil′ ,il′′) = δ∗(q0, wil,il′′) = δ∗(q0, wil′ ,il′′) = q

so that (1) holds with wil′ ,il′′ in the role of w. It follows that M is prefix-cyclic.
ut

We obtain the following

Corollary 2 ([8]). Suppose that the DFA M = (Q,Σ, δ, q0) is not prefix-cyclic
and has t+ 1 states. Then `M < r(3, t).

Proof. There can be no string w ∈ Σ+ such that δ∗(q0, w) = q0 because, other-
wise, Condition (1) would be satisfied with q0 in the role of q. Assume for sake
of contradiction that `M ≥ r(3, t). An inspection of the second part of the proof
of Theorem 1 shows that this leads to a t-coloring (the color q0 is not used!) of
the complete graph with r(3, t) nodes so that there is a monochromatic triangle
and, consequently, M would be prefix-cyclic (in contradiction to the assumption
made in Corollary 2). ut

3.2 Tight Bounds on the Activity Level (Arbitrary Alphabet)

Suppose M = (Q,Σ, δ, q0) is not prefix-cyclic. Let t = |Q| − 1 denote the number
of non-initial states. According to Corollary 2, `M < r(3, t). Typically, bounds
obtained from Ramsey theory are far from being tight. We will however show in
this section that the upper bound r(3, t) on `M is not so far from the truth. We
begin our considerations with another upper bound on `M .

Theorem 3. For any non prefix-cyclic DFA M with t+ 1 states: `M ≤ 2t − 1.

4 In Ramsey Theory, r(3, t) is known as the “triangular Ramsey Number with t colors”.

DFAs with a Bounded Activity Level 5

Proof. Let ` = `M . Pick a string w and letter positions 1 ≤ i1 < . . . < i` < j such
that, for all l = 1, . . . , `, the substrings wil,j are fully processed. For convenience,
set i`+1 = j. For l′ = 1, . . . , `, the “l′-snapshot” is defined as the set

Ql′ := {δ∗(q0, wil,il′+1
) : l = 1, . . . , l′} ⊆ Q \ {q0} .

In other words: if we consider the l′ computational processes created by starting
M in positions i1, . . . , il′ , then Ql′ records the set of states of these processes
when they have reached position il′+1. Note that Ql′ 6= ∅ for all l′ = 1, . . . , ` so
that there can be at most 2t − 1 distinct snapshots. All what remains to do is
showing that they actually are distinct. Suppose for sake of contradiction that
Ql′ = Ql′′ for some 1 ≤ l′ < l′′ ≤ `. It follows that we can push the activity
level beyond any given bound m simply by replacing the substring u = wil′ ,il′′ of
w by um. As an unbounded activity level would imply that M is prefix-cyclic,
we arrived at a contradiction. It follows that the snapshots are distinct and,
therefore, ` ≤ 2t − 1. ut

The following result shows that the bound in Theorem 3 is tight:

Theorem 4. There exists a non prefix-cyclic DFA M with t + 1 states and
alphabet size t such that `M ≥ 2t − 1.

Proof. Let M = (Q,Σ, δ, q0) be given by Q = {q0, q1, . . . , qt}, Σ = {a1, . . . , at},
and

δ(qi, aj) =

 qj if i < j
qi if i > j

undefined if i = j
. (2)

The following statements obviously hold for any qk ∈ Q and any w ∈ Σ+:

δ∗(qk, w) = qk ⇔ k ≥ 2 ∧ w ∈ {a1, . . . , ak−1}+

δ∗(q0, w) = qk ⇒ letter ak occurs in w

It follows that M is not prefix-cyclic because Condition (1) cannot be satisfied.
With the following inductively defined strings w(1), . . . , w(t), we will be able to
push the activity level up to 2t − 1:

w(1) = a1 and w(k) = w(k − 1)akw(k − 1)

The first members of this sequence evolve as follows:

w(1) = a1 , w(2) = a1a2a1 , w(3) = a1a2a1a3a1a2a1 , . . .

Clearly |w(t)| = 2t−1. We claim that all 2t−1 suffixes of w(t) are fully processed
by M (which would readily imply that `M ≥ 2t − 1). The claim is obtained from
the following observations:

1. The snapshot5 after reading w(k) contains state qi with multiplicity 2i−1 for
i = 1, . . . , k (and no other states).

5 Here, the snapshot is considered as a multiset so as to take multiplicities of states
into account.

6 M. Konitzer and H. Simon

2. The snapshot after reading w(k)ak+1 contains the state qk+1 with multiplicity
2k (and no other states).

The second statement immediately follows from the first one. The first statement
for w(k) immediately follows inductively from the second statement for w(k−1)ak.

ut

4 Activity Level of DFAs with a Binary Alphabet

We argue in Section 4.1 that the maximum activity level `M of a DFA M can
be associated with the language L(M) = L generated by M (and can therefore
be written `L). In Section 4.2, we define a mapping L 7→ Lbin that transforms
a prefix-closed language over an arbitrary alphabet into a corresponding prefix-
closed language over a binary alphabet. It is analyzed how `L and `Lbin

are
related. In Section 4.3, we show that there exists a non prefix-cyclic DFA M
over a binary alphabet that has 1 + 3tdlog te states and satisfies `M ≥ 2t − 1. A
comparison with Theorem 4 shows that the restriction of having a binary input
alphabet does not reduce the largest possible activity-level dramatically.

4.1 Activity Level as an Invariant of the Underlying Language

A DFA M = (Q,Σ, δ, q0, F) with a partially defined transition function δ is
called prefix-closed if F = Q, i.e., all states of M are accepting. Note that, in this
case, the language L(M) coincides with the set of input strings which are fully
processed by M . A language L is called prefix-closed if w ∈ L implies that every
prefix of w belongs to L too. In other words, any extension of a string w /∈ L
does not belong to L either. Obviously the following holds:

– If M is a prefix-closed DFA, then L(M) is a prefix-closed regular language.
– Any prefix-closed regular language can be be recognized by a prefix-closed

DFA.

We define the maximum activity level of a language L as follows:

`L = sup{` : (∃w1, . . . , w` ∈ Σ+,∀l = 1, . . . , ` : wl · · ·w` ∈ L)}

For ease of later reference, we say that w1, . . . , w` are witnesses for `M ≥ ` if
wl · · ·w` ∈ L for l = 1, . . . , `.

Let M be a prefix-closed DFA. It is then evident from the definition of `M and
`L that `M = `L(M). Thus, `M = `M ′ for any DFA M ′ such that L(M) = L(M ′).

4.2 From an Arbitrary to a Binary Alphabet

For a language L, let Pref(L) denote the language of all prefixes of strings from
L. So L is prefix-closed iff Pref(L) = L.

Let L ⊆ Σ∗ be a prefix-closed language over the alphabet Σ = {a0, . . . , aK−1},
and let k = dlogKe so that every letter aj can be encoded as a binary string

DFAs with a Bounded Activity Level 7

bin(j) of length precisely k (with leading zeros if necessary). Let R denote
the homomorphism from Σ∗ to {0, 1}∗ that is induced by aj 7→ bin(j). Then
R(L) = {R(w) : w ∈ L} is the image of L under mapping R. Note that the
length of any string in R(Σ∗) is a multiple of k. The language Lbin = Pref(R(L))
is called the binary version of L in what follows. Note that Lbin is prefix-closed
by construction.

Lemma 5. With these notations, the following holds for any prefix-closed lan-
guage L ⊆ Σ∗:

1. If w ∈ L then R(w) ∈ Lbin.
2. If x ∈ Lbin and |x| is a multiple of k, then there exists a string v ∈ L such

that x = R(v).

Proof. The first statement is obvious from w ∈ L⇔ R(w) ∈ R(L) and R(L) ⊆
Pref(R(L)) = Lbin. As for the second statement, x ∈ Lbin = Pref(R(L)) implies
that there exists a suffix y ∈ {0, 1}∗ such that xy ∈ R(L). xy ∈ R(L) implies
that |xy| is a multiple of k and, since |x| is a multiple of k by assumption, |y| is
a multiple of k too. The definition of R(L) now implies that there exist strings
v, w ∈ Σ∗ such that x = R(v), y = R(w) and vw ∈ L. Since L is prefix-closed by
assumption, it follows that v ∈ L. ut

Theorem 6. With the above notations, the following holds for any prefix-closed
language L:

1. `L =∞ iff `Lbin
=∞.

2. If `L <∞, then `L ≤ `Lbin
≤ k · `L + 1.

Proof. It suffices to show that, for all ` ≥ 1,

`L ≥ `⇒ `Lbin
≥ ` and `Lbin

≥ k`+ 1⇒ `L ≥ ` .

Let w1, . . . , w` ∈ Σ+ be witnesses for `L ≥ `. It readily follows that the strings
R(w1), . . . , R(w`) ∈ {0, 1}+ are witnesses for `Lbin

≥ `.
Let now x1, . . . , x`′ ∈ {0, 1}+ be witnesses for `Lbin

≥ `′, i.e.,

∀l = 1, . . . , `′ : yl := xl · · ·x`′ ∈ Lbin .

Let us introduce for the moment the following additional assumption:

∀l = 1, . . . , `′ : |yl| is a multiple of k , (3)

which is equivalent to saying that, for l = 1, . . . , `′, |xl| is a multiple of k. Then
the second statement in Lemma 5 (and the fact that R is a homomorphism) let us
conclude that there exist strings w1, . . . , w`′ ∈ Σ+ with the following properties:

– For all l = 1, . . . , `′, R(wl) = xl.
– w1, . . . , w`′ are witnesses for `L ≥ `′ = `Lbin

.

8 M. Konitzer and H. Simon

Of course our assumption of |yl| being a multiple of k is not justified. However,
if `′ = k` + 1, we can argue as follows. We put yl in a bucket with number
|yl| mod k ∈ {0, . . . , k − 1}. By the pigeon-hole principle, there must exist a
number κ ∈ {0, . . . , k − 1} such that the bucket with number κ contains ` + 1
suffixes of x1 · · ·x`′ , say yl1 , . . . , yl` , yl`+1

when ordered according to decreasing
length. Note that the shortest suffix, yl`+1

, is a common suffix of all the other
ones. Let us erase the suffix yl`+1

from yl1 , . . . , yl` , respectively, and obtain the
new sequence y′l1 , . . . , y

′
l`

. Note that y′l1 , . . . , y
′
l`

still belong to Lbin because Lbin

is prefix-closed. From |yl| mod k = κ for l = 1, . . . , `+ 1, we can conclude that
|y′l| mod k = 0 for l = 1, . . . , `. Thus, assumption (3) on which our previous
analysis was based is now satisfied, indeed, with ` in the role of `′. It follows that
`L ≥ ` provided that `Lbin

≥ k`+ 1. ut

4.3 A Lower Bound on the Activity Level (Binary Alphabet)

The following lower bound, valid for a DFA with a binary input alphabet, should
be compared with the (only slightly superior) lower bound from Theorem 4
(which however makes use of a DFA with a very large input alphabet).

Theorem 7. There exists a non prefix-cyclic DFA with a binary input alphabet,
1 + 3tdlog te states and an activity level of at least 2t − 1.

Proof. Let M = (Q,Σ, δ, q0) be the DFA from the proof of Theorem 4 except for
the following technical modification: we use alphabet Σ = {a0, . . . , at−1} instead
of {a1, . . . , at}, and state set Q = {q−1, q0, . . . , qt−1} instead of {q0, q1, . . . , qt}.
Now q−1 is the initial state. As before, δ is given by (2).6 We know from Theorem 4
that `M ≥ 2t − 1. Let L = L(M). We will design a DFA M ′ = (Q′, {0, 1}, δ′, q′0)
for Lbin. According to Theorem 6, `M ′ ≥ `M ≥ 2t − 1. It suffices therefore to
make sure that |Q′| = 1 + 3tdlog te states are sufficient for the design of M ′. Let
k = dlog te. Q′ is now chosen as the union of {q′0} with the following set:

{(b, κ, s) : b ∈ {bin(i) : i = 0, 1, . . . , t− 1}, κ ∈ {0, 1, . . . , k − 1}, s ∈ {<,>, ?}}

The intuition behind this definition is as follows:

– The computation of M on input w ∈ Σ∗ is simulated by running the com-
putation of M ′ on input R(w) where R is the homomorphism induced by
aj 7→ bin(j) from Section 4.2.

– When M is in state qi, then M ′ keeps b = bin(i) ∈ {0, 1}k in its finite control.
The parameter κ indicates how many bits of bin(j) are processed by M ′

already when M is currently processing symbol aj . The flag s is set to “<”
(resp. “>”) if M ′ already knows that i < j (resp. i > j). Before a successful
comparison of i and j, the flag s is set to “?”.

6 Reason for the modification: we will map the underlying language L to Lbin, and we
won’t leave the bit pattern bin(0) unused.

DFAs with a Bounded Activity Level 9

It is not hard to see that the transition function δ′ of M ′ can be defined such
that M ′ simulates a transition δ(qi, aj) of DFA M . The main point is that the
comparison of the binary encodings of two numbers i and j can easily be done
bitwise (where bin(i) is kept in the finite control and bin(j) is processed from
left to right on the input tape). The details of this simulation, omitted here due
to space constraints, are found in the full version of the paper. ut

5 Unbounded Activity Level and Nerode Relation

We briefly remind the reader that the Nerode relation induced by a language

L ⊆ Σ∗, denoted
L≡, is a right-congruent equivalence relation on Σ∗ that has

finitely many equivalence classes iff L is regular. The equivalence classes can then
be viewed as the states of the so-called Nerode DFA ML for L.

Theorem 8. Let L be a prefix-closed regular language. Then, `L =∞ iff there

exists a non-empty string w ∈ L such that w
L≡ w2.

The proof of this theorem, omitted here due to space constraints, is based on the

fact that the condition w
L≡ w2 is equivalent to the condition q := δ∗(q0, w) =

δ∗(q, w) for the transition function δ of the (prefix-free version of the) Nerode
DFA ML.

6 Some Complexity Issues

The following theorem is immediate from Theorem 1 and from the definition of
“prefix-cyclic” in (1):

Theorem 9 ([8]). It can be decided within O(t2) steps whether a DFA M of
size t has an unbounded activity level.

Proof. Let q0 denote the initial state of M , and let M ′ = M . Compute the
product automaton of M and M ′ and check whether its transition graph contains
a non-trivial path from (q0, q) to (q, q) for some state q. ut

Suppose now that M is not prefix-cyclic so that it has a bounded activity
level. It turns out that the computation of the maximum activity level, `M , is a
hard problem:

Theorem 10. Given a non prefix-cyclic DFA M with t+ 1 states and given a
threshold T , the problem to decide whether `M > T is PSPACE-complete.

Proof. Membership in PSPACE can be seen as follows. Guess a string w =
a1a2 . . . an letter by letter, start a computation of M on each letter of w so
that up to i computations could potentially be active after the first i letters
a1, . . . , ai have been processed. For each non-initial node q, keep track of the
number j(q) of active computations which are in state q after having processed

10 M. Konitzer and H. Simon

a1, . . . , ai (where the variable j(q) must be updated whenever a new letter is
processed). Furthermore keep track of J :=

∑
q j(q). As soon as J > T accept.

Since, at any time, only t numbers in the range from 0 to T + 1 are stored, this
is a space-efficient non-deterministic procedure for the given decision problem.
Because of Savich’s theorem, it can be turned into a space-efficient deterministic
procedure.
In order to show PSPACE-hardness, we present a polynomial reduction from
“Finite Automata Intersection (FAI)” to our problem. FAI, which is known to
be PSPACE-complete [9], is the following problem: given T ≥ 2 and a list
M1, . . . ,MT of DFAs with the same input alphabet Σ and with one accepting
state per DFA, does there exist an input string w ∈ Σ∗ that is accepted by every
DFA in the list? In the sequel, the initial state of Mj is denoted qj0 and its (unique)

accepting state is denoted qj+. We may consider the state sets Q1, . . . , QT of
M1, . . . ,MT , respectively, as pairwise disjoint. We plan to build a non prefix-cyclic
DFA M from M1, . . . ,MT such that `M > T iff there exists a string w that is
accepted by M1, . . . ,MT . To this end, let `,a/∈ Σ be new symbols, and let q0, q+
be new states. M with input alphabet Σ ∪ {`,a}, state set {q0, q+} ∪

⋃T
i=1Qi

and initial state q0, has precisely the following transitions:

– M inherits all transitions from M1, . . . ,MT .
– When reading ` in state q0, M moves to state q10 .
– When reading ` in state qj0 for some j < T , M moves to state qj+1

0 .

– When reading a in state q0 or in state qj+ for some j ∈ {1, . . . , T}, M moves
to state q+.

Suppose that there is a string w which is accepted by all of M1, . . . ,MT . Consider
the string `T w a and assume that we start a computation of M on each of the
T occurrences of `. Note that the computation started on the j-th occurrence
of ` will be in state qT+1−j

0 when reaching the first letter of w. Thus we run a
computation on w for each of the given T DFAs. After having processed w, the T
active computations are in states q1+, . . . , q

T
+, respectively. When processing the

final letter of a, we again start a new computation of M , which leads to a state
transition from q0 to q+. In addition, we have the state transitions from qj+ to
q+ for j = 1, . . . , T . Thus, we have now T + 1 > T active computations running
simultaneously (though all of them will be finished at the very next step).
As for the reverse direction, we have to show that an activity level exceeding T
can be reached only if there exists a word over the alphabet Σ that is accepted
by all of M1, . . . ,MT . The main technical observations are as follows:

– In state q0 only the symbols ` and a are processed. Thus, a new computation
can be successfully started on these two letters only.

– Any occurrence of symbol ` will terminate all computations which are not
in a state from {q0, q10 , . . . , qT−10 }.

– In state q+ no symbol is processed.
– Symbol a is processed only when M is in state q0 or qj+ for some j ∈
{1, . . . , T}. Thereafter, all still active computations are in state q+ (so that
these computations are terminated in the next step).

DFAs with a Bounded Activity Level 11

From these observations, it easily follows that we have at most T active computa-
tions (one for each of the DFAs M1, . . . ,MT) as long as a is not processed. If a
is processed, the number of active computations can be at most T + 1 (implying
that M is not prefix-cyclic). Moreover the case of T + 1 active computations can
occur only on strings which contain the symbols ` and a and which have the
property that the word between the last occurrence of ` and the first occurrence
of a is accepted by all of M1, . . . ,MT . ut

The procedure for the determination of `M that was suggested in the proof
of Theorem 10 shows membership in PSPACE but is not a realistic one. We
briefly sketch a procedure that is realistic at least for DFAs with a small number
of states. It is based on the notion of a “snapshot” (similar to the notion that
was used in the proof of Theorem 3). Let M = (Q,Σ, δ, q0) be the given non
prefix-cyclic DFA. A set S ⊆ Q \ {q0} is called a snapshot if S = ∅ or if there
exists a string w = a1 . . . an and letter positions 1 ≤ i1 < . . . i` ≤ n such that
S = {δ∗(q0, wil,n+1) : l = 1, . . . , `} and such that all strings wil,n+1 are fully
processed. We build a directed snapshot graph G = (V,E) as follows. V is defined
as the set of snapshots. V and E are computed iteratively as follows:

1. Initially set V := {∅} and E := ∅.
2. For each S ∈ V and for each a ∈ Σ such that δ(q, a) is defined for all q ∈ S,

add S′ := {δ(q, a) : q ∈ S} and S′′ := S′ ∪ {δ(q0, a)} to V . Moreover, add
the edges (S, S′) and (S, S′′) to E, where edge (S, S′′) is declared “special”.

The second step is applied to every node only once. Intuitively, an edge represents
a possible next a-transition of a collection of currently active DFA-explorations
(provided that no exploration terminates when processing a), where a special
edge reflects the option to start a new computation on a. An example is shown
in Fig. 2.

It is easy (and similar to the proof of Theorem 3) to show the following:

– The strongly connected components of G = (V,E) do not contain special
edges (because, otherwise, `M =∞).

– If we assign length 1 to special edges and length 0 to all remaining ones, then
`M coincides with the total length of a longest path in G.

In order to compute the total length of the longest path efficiently, an auxiliary
directed acyclic “super-graph” G′ is computed as follows:

1. The “super-nodes” in G′ are the strongly connected components of G.
2. An edge e′ is drawn from a strongly connected component K1 to another

strongly connected component K2 iff E contains an edge e leading from
a node in K1 to a node in K2. The edge e′ is declared “special” iff the
underlying edge e ∈ E can be chosen as a special one.

Since strongly connected components do not contain special edges, the total
length of the longest path in G equals the total length of the longest path in G′.
But the latter quantity is easy to compute provided that the nodes of G′ are
processed in topological order. If everything is implemented properly then the
run-time is linear in the size of snapshot graph G. Note, however, that this size
can be exponential in the size t of the given DFA M .

12 M. Konitzer and H. Simon

q q
q

q
q

q

q

q

q
q

q

q
1 2

1

2
3

1

3

2

3

1

2

3

1

2

2

1

1 3

1
2

1

2

2

1

1

1 2
3

3 3

3

Fig. 2. The snapshot graph induced by the DFA from the proof of Theorem 4 for
t = 3: an edge is labeled i if it represents an ai-transition. Special edges are solid, the
remaining ones are dashed.

Acknowledgements

We would like to thank four anonymous referees for their comments and sugges-
tions. We furthermore thank Eberhard Bertsch for communicating the problem
statement to us and for many helpful suggestions.

References

1. Bermudez, M.E., Schimpf, K.M.: Practical arbitrary lookahead LR parsing. Journal
of Computer and System Sciences 41(2), 230–250 (1990)

2. Boullier, P.: Contribution à la construction automatique d’analyseurs lexi-
cographiques et syntaxiques. Ph.D. thesis, Université d’Orléans (1984)

3. Chung, F.R.K., Grinstead, C.M.: A survey of bounds for classical Ramsey numbers.
Journal of Graph Theory 7(1), 25–37 (1983)

4. Farré, J., Gálvez, J.F.: A bounded graph-connect construction for LR-regular parsers.
In: Proceedings of the 10th International Conference on Compiler Construction. pp.
244–258 (2001)

5. Fredricksen, H.: Schur numbers and the Ramsey numbers N(3,3,...,3;2). Journal of
Combinatorial Theory, Series A 27(3), 376–377 (1979)

6. Gosling, J., Joy, B., Steele, G.: The JavaTM Language Specification. Addison-Wesley
(1996)

7. Knuth, D.E.: On the translation of languages from left to right. Information and
Control 8(6), 607–639 (1965)

8. Konitzer, M.: Laufzeitanalyse und Optimierung von Parsern für LR-reguläre Gram-
matiken. Ph.D. thesis, Ruhr-University Bochum (2013)

9. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Symposium on Foundations of Computer Science. pp. 254–266 (1977)

10. Schmitz, S.: Approximating Context-Free Grammars for Parsing and Verification.
Ph.D. thesis, Université de Nice-Sophia Antipolis (2007)

11. Wan, H.: Upper bounds for Ramsey numbers R(3,3,...,3) and Schur numbers.
Journal of Graph Theory 26(3), 119–122 (1997)

12. C̆ulik, K., Cohen, R.: LR-regular grammars - an extension of LR(k) grammars.
Journal of Computer and System Sciences 7(1), 66–96 (1973)

