TeilnNr.	Punkte	Aufgabe
		1

Aufgabe 1:

Bei der Geburt ihres Kindes beschließen die Eltern, einen Betrag *K* mit 7 % Verzinsung und jährlicher Zinsgutschrift so anzulegen, daß dem Kind nach 20 Jahren 20.000 DM für ein sorgenfreies Studium zur Verfügung stehen.

- (a) Berechnen Sie *K*!
- (b) Während der 20 Jahre muß mit einer stetigen Inflation von 3 % gerechnet werden. Wie hoch muß K sein, damit nach 20 Jahren ein Betrag K_n zur Verfügung steht, welcher der heutigen Kaufkraft von 20.000 DM entspricht?

Berechnen Sie zunächst K_n !

(Alle Beträge sind auf volle 10 DM aufzurunden)

Lösung zu Aufgabe 1:

TeilnNr.	Punkte	Aufgabe
		2

Aufgabe 2:

Gegeben sei die stückweise definierte Funktion

$$f(x) = \begin{cases} f_l(x) & \text{für } x \le 1 \\ f_r(x) & \text{für } x > 1 \end{cases}$$

mit
$$f_l(x) = -x^2 + 4$$
 und $f_r(x) = -\frac{1}{3}x^3 + \frac{5}{2}x^2 - 6x + 6\frac{5}{6}$

- (a) Ist f(x) im Punkt $x_0 = 1$ stetig und differenzierbar? (Begründung!)
- (b) Bestimmen Sie alle lokalen Minima und Maxima von f(x)!

Lösung zu Aufgabe 2:

TeilnNr.	Punkte	Aufgabe
		3

Aufgabe 3:

Die Nachfragemenge x eines Produktes in Abhängigkeit seines Preises p sei

$$x(p) = \frac{1}{\sqrt{p}} \cdot e^{-p} .$$

- (a) Berechnen Sie die Elastizitäten von Nachfrage und Umsatz bezüglich des Preises!
- (b) Um wieviel % ändern sich Nachfrage und Umsatz approximativ, wenn der Preis von $p_0 = 1 \, \mathrm{DM} \, \mathrm{um} \, 2$ % gesenkt wird?

Lösung zu Aufgabe 3:

TeilnNr.	Punkte	Aufgabe
		4

Aufgabe 4:

Nähern Sie die Funktion

$$f(x) = (x^2 + 1) \cdot \ln(x^2 + 1)$$

im Punkt $x_0 = 0$ durch ein Taylerpolynom 2. Grades an!

Lösung zu Aufgabe 4:

TeilnNr.	Punkte	Aufgabe
		5

Aufgabe 5:

Bestimmen Sie näherungsweise die Nullstelle der Funktion

$$f(x) = e^{x-1} + 2x - 3,$$

indem Sie 2 Iterationen mit Hilfe des Newton-Verfahrens durchführen, beginnend mit $x_0 = 0$! Geben Sie \mathbf{x}_1 und \mathbf{x}_2 auf 2 Nachkommastellen genau an!

Lösung zu Aufgabe 5:

TeilnNr.	Punkte	Aufgabe
		6

Aufgabe 6:

Untersuchen Sie die Funktion

$$f(x,y) = (x-1)^3 + (y-1)^3 - 3(x-1)(y-1) + 1$$

auf lokale Extrema und Sattelpnkte!

Lösung zu Aufgabe 6:

TeilnNr.	Punkte	Aufgabe
		7

Aufgabe 7:

Gegeben ist die Produktionsfunktion

$$f(x, y, z) = \sqrt[6]{x^3 y^4 z^5}$$

- (a) Ist die Funktion homogen? Wenn ja, von welchem Grade?
- (b) Bestimmen Sie alle partiellen Elastizitäten!
- (c) Um wieviel % ändert sich die aktuelle Produktion (x_0, y_0, z_0) näherungsweise, wenn jeweils ceteris paribus x_0 bzw. y_0 bzw. z_0 um 6 % erhöht werden?

Lösung zu Aufgabe 7:

TeilnNr.	Punkte	Aufgabe
		8

Aufgabe 8:

Bestimmen Sie das Maximum der Produktionsfunktion

$$f(x,y) = x^{\frac{1}{3}}y^{\frac{2}{3}}$$
 $(x,y > 0)$

unter der Nebenbedingung

$$x^{\frac{1}{3}} + y^{\frac{2}{3}} = 8.$$

Lösung zu Aufgabe 8:

TeilnNr.	Punkte	Aufgabe
		9

Aufgabe 9:

Berechnen Sie

$$\int_0^1 \int_0^1 -3x^2 - 3y^2 + 4dx \qquad dy !$$

Lösung zu Aufgabe 9: