RUHR - UNIVERSITÄT BOCHUM

Fakultät für Wirtschaftswissenschaft

KLAUSUR Mathematik für Ökonomen

Lineare Algebra 21.5.1999 (SS 1999)

Name	
Vorname	
Teilnehmer-Nr.	

Zur Beachtung

Die Klausur umfaßt 9 Aufgaben; pro Aufgabe sind 5 Punkte erreichbar.

Es haben nur solche Lösungen Anspruch auf Wertung, aus denen der Lösungsweg klar ersichtlich ist.

Dauer der Klausur: 90 Minuten

Hilfsmittel: keine

Bitte nicht ausfüllen

Punkte	Note	Unterschrift

A 1

Bestimmen Sie eine Zahl $a \in \mathbb{R}$ so, daß für $\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$ und $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 4 & 1 \end{pmatrix}$ gilt: $|(\mathbf{A}' \mathbf{B} \mathbf{A})^{-1}| = \operatorname{Spur}(\frac{1}{a} \mathbf{B})$.

Ein Unternehmen stellt aus den Rohstoffen R_1 , R_2 , R_3 , R_4 , R_5 die Zwischenprodukte Z_1 , Z_2 , Z_3 , Z_4 her. Aus diesen Zwischenprodukten werden die Vorprodukte V_1 , V_2 , V_3 , V_4 erzeugt und daraus die Endprodukte E_1 , E_2 , E_3 . Die zur Herstellung benötigten Mengen sind in drei Tabellen zusammengefaßt:

	Z_1	Z_2	Z_3	Z_4		V_1	V_2	V_3	V_4			E_1	E_2	E_3
R_1	1	0	1	0	$\overline{Z_1}$	1	2	3	3	_	$\overline{V_1}$	1	3	0
R_2	0	1	1	1	Z_2	0	1	2	1		V_2	1	0	2
R_3	1	0	0	1	Z_3	1	1	1	2		V_3	0	1	1
R_4	0	1	1	1	Z_4	1	1	1	2		V_4	1	0	0
R_5	1	0	1	0							•			

Das Produktionssoll beträgt 10 ME für E_1 , 20 ME für E_2 und 20 ME für E_3 .

- (a) Stellen Sie die obigen Angaben durch drei Matrizen und einen Vektor dar.

 Verwenden Sie ausschließlich diese Matrizen bzw. diesen Vektor zur Lösung der Teilaufgaben (b),(c),(d).
- (b) Bestimmen Sie die Matrix des Rohstoffverbrauchs für die Vorprodukte V_1 ,, V_4 .
- (c) Ermitteln Sie die Matrix des Rohstoffverbrauchs für die Endprodukte E_1 , E_2 , E_3 .
- (d) Wie hoch ist der Rohstoffbedarf zur Herstellung des Produktionssolls?

Bestimmen Sie die Inverse der partitionierten Matrix $A = \begin{pmatrix} B^{-1} & 0 \\ B-I & B^2 \end{pmatrix}$!

Hinweis: Für eine partitionierte Matrix
$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}$$
 mit regulärer Untermatrix \mathbf{A}_{11} und regulärer Hilfsmatrix $\mathbf{C} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$ berechnet sich die Inverse \mathbf{A}^{-1} durch $\mathbf{A}^{-1} = \begin{pmatrix} \mathbf{A}_{11}^{-1} \left(\mathbf{I} + \mathbf{A}_{12} \mathbf{C}^{-1} \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \right) & -\mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{C}^{-1} \\ -\mathbf{C}^{-1} \mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{C}^{-1} \end{pmatrix}$.

A 4

Die **L-R-**Zerlegung $\mathbf{A} = \mathbf{L} \cdot \mathbf{R}$ einer quadratischen Matrix \mathbf{A} ergibt $\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$, $\mathbf{R} = \begin{pmatrix} 1 & 3 & 1 \\ 0 & -4 & -2 \\ 0 & 0 & 1 \end{pmatrix}$.

Berechnen Sie

- (a) die Determinante von A,
- (b) die Lösung des linearen Gleichungssystems $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ mit $\mathbf{b} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$!

Während der Durchführung des Gauß-Algorithmus bei verschiedenen linearen Gleichungssystemen ergeben sich die folgenden Darstellungen. Geben Sie jeweils die Lösungsmenge - ggf. in Parameterform - des Gleichungssystems an!

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a)	x_1	x_2	x_3	r.S.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1	1	2
1 2 4 8		1	0	2	3
1 2 7 0		_1	2	4	8

Lösung zu (a)

(b)
$$\begin{array}{c|cccc} x_1 & x_2 & x_3 & \text{r.S.} \\ \hline 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 3 \\ 1 & 1 & 3 & 5 \\ \end{array}$$

Lösung zu (b)

(c)
$$\begin{array}{c|ccccc} x_1 & x_2 & x_3 & r.S. \\ \hline 0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 4 \\ \end{array}$$

Lösung zu (c)

Die drei Hilfsabteilungen N_1 , N_2 , N_3 geben an die beiden Hauptabteilungen H_1 , H_2 Leistungen ab, "beliefern" sich aber auch gegenseitig. Die Höhe dieses Leistungstransfers - gemessen in Leistungseinheiten (LE) - wird durch folgende Tabelle abgebildet:

	Empfänger									
		N_1	N_2	N_3	H_1	H_2	Primärkosten			
	N_1	2	0	10	7	3	250			
Lieferant	N_2	5	3	10	4	6	350			
	N_3	0	10	4	1	9	300			

- (a) Bestimmen Sie die Verrechnungspreise p_i in DM/LE für jede der Abteilungen N_i .
- (b) Verteilen Sie die primären Gesamtkosten auf die Hauptabteilungen $\,H_1\,,\,H_2\,.$

A /

Eine 2×2 Matrix **A** besitzt die Darstellung $\mathbf{A} = \mathbf{I} - \mathbf{v}\mathbf{v}'$, wobei $\mathbf{v} \in \mathbb{R}^2$ ein Vektor ist mit $|\mathbf{v}| = 1$.

- (a) Berechnen Sie die Spur(A).
- (b) Bestimmen Sie $A^2 = A \cdot A$.
- (c) Welche Bedingungen ergeben sich aus (a) und (b) für die Eigenwerte λ_1 , λ_2 von \mathbf{A} ? Geben Sie λ_1 , λ_2 an.
- (d) Ist A regulär? (Begründung!)

A 8

Die Singulärwertzerlegung $\mathbf{A} = w_1 \mathbf{u}_1 \mathbf{v}_1' + w_2 \mathbf{u}_2 \mathbf{v}_2'$ einer 4×2-Matrix \mathbf{A} ergibt

$$w_1 = 25$$
, $w_2 = 0$, $\mathbf{u}_1 = \frac{1}{5} \begin{pmatrix} 4 \\ 2 \\ 2 \\ 1 \end{pmatrix}$, $\mathbf{v}_1 = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

- (a) Welchen Rang besitzt die Matrix A? (Begründung!)
- (b) Welche der Lösungsmengen genau eine Lösung
 - unendlich viele Lösungen
 - keine Lösung

erhält man für das lineare Gleichungssystem $\mathbf{A}\mathbf{x} = \mathbf{b}$ mit $\mathbf{b} = 25 \cdot \begin{pmatrix} 1 \\ 4 \\ 4 \\ 5 \end{pmatrix}$? (Begründung!)

- (c) Welche Eigenschaft besitzt die "Lösung" $\mathbf{x}^+ = \mathbf{A}^+ \cdot \mathbf{b}$ dieses Gleichungssystems? Dabei ist $\mathbf{A}^+ = w_1^+ \mathbf{v}_1 \mathbf{u}_1' + w_2^+ \mathbf{v}_2 \mathbf{u}_2'$ mit $w_i^+ = \frac{1}{w_i}$, falls $w_i \neq 0$, $w_i^+ = 0$, falls $w_i = 0$.
- (d) Berechnen Sie x⁺!

Ein Unternehmen stellt die Produkte P_1 , P_2 , P_3 an den Fertigungsstellen F_1 , F_2 , F_3 her. Die je Produkt- und Fertigungsstelle benötigten Produktionszeiten, die Kapazitäten der Fertigungsstellen sowie die Deckungsbeiträge (DB) der Produkte sind in nebenstehender Tabelle zusammengefaßt:

	P_1	P_2	P_3	Kapazität
F_1	1	1	3	60
F_2	2	0	2	40
F_3	0	1	1	30
DB	15	10	5	

(a) Stellen Sie das zugehörige Simplex-Anfangstableau zur Maximierung des DB auf!

BV	x_1	x_2	x_3	u_1	u_2	u_3	r.S.
z							

(b) Während der Durchführung des Simplex-Algorithmus ergibt sich folgendes Tableau:

					u_2			
u_1	0	1	2	1	-0,5	0	40	
x_1	1	0	1	0	0,5	0	20	
u_3	0	1	1	0	-0,5 0,5 0	1	30	
z	0	-10	10	0	7,5	0	300	

Welche Variable ist in die Basis aufzunehmen, welche zu eliminieren? (Füllen Sie die letzte Spalte des Tableaus aus und markieren Sie das Pivotelement!)

(c) Das Endtableau besitzt folgende Gestalt:

BV	x_1	x_2	x_3	u_1	u_2	u_3	r.S.
u_1	0	0	1	1	-0,5	-1	10
x_1	1	0	1	0	0,5	0	20
x_2	0	1	1	0	-0,5 0,5 0	1	30
z	0	0	20	0	7,5	10	600

- Wie lauten die optimalen Produktionsmengen x_1 , x_2 , x_3 ?
- Welcher *DB* wird dabei erzielt?
- An welcher Fertigungsstelle gibt es noch wieviel freie Kapazität?
- Wie ändert sich der DB, wenn die Kapazität der Fertigungsstelle 2 um eine Einheit erhöht wird?