TeilnNr.	Punkte	Aufgabe
		1

Aufgabe 1:

Bestimmen Sie Zahlen $a,b \in R$, für die

$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \cdot \begin{pmatrix} 3 & 6 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

und gleichzeitig a + b + 1 = 0 gilt.

Lösung zu Aufgabe 1:

TeilnNr.	Punkte	Aufgabe
		2

Aufgabe 2:

Ein Unernehmen stellt aus 4 Rohstoffen (R_1 , R_2 , R_3 , R_4) 3 Zwischenprodukte (Z_1 , Z_2 , Z_3) und daraus zwei Endprodukte (E_1 , E_2) her. Die dazu benötigten Einsatzmengen sind in zwei Tabellen zusammengefaßt:

$$\begin{array}{c|cccc} & E_1 & E_2 \\ \hline Z_1 & 1 & 1 \\ Z_2 & 2 & 0 \\ Z_3 & 0 & 2 \\ \end{array}$$

Das Produktionssoll beträgt 10 Mengeneinheiten (ME) für E_1 und 5 ME für E_2 . Die Rohstoffkosten belaufen sich auf jeweils 1 DM/ME für R_1 und R_4 sowie jeweils 2 DM/ME für R_2 und R_3 .

Aufgrund dieser Angaben gelangt das Unternehmen zu folgenden Ergebnissen:

(a) Zur Produktion von E_1 bzw. E_2 benötigt man folgende Rohstoffmengen:

	$\mid E_1 \mid$	E_2
$\overline{R_1}$	3	3
R_2	4	2
R_3	4	2
$R_{\scriptscriptstyle A}$	1	5

- (b) Der Bedarf an Rohstoffen zur Erfüllung des Produktionssolls beträgt 45 ME von R_1 , 50 ME von R_2 , 50 ME von R_3 und 35 ME von R_4 .
- (c) Dabei entstehen Rohstoffkosten in Höhe von 280 DM.

Stellen Sie die Aussagen von (a), (b) und (c) dar als Ergebnisse von Matrix- bzw. Vektoroperationen (mit geeignet definierten Matrizen bzw. Vektoren) und überprüfen Sie so die Richtigkeit der Aussagen.

Lösung zu Aufgabe 2:

TeilnNr.	Punkte	Aufgabe
		3

Aufgabe 3:

Berechnen Sie für **Z**=**X**·**Y**

mit
$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 5 & 3 \end{pmatrix}$$
 und $\mathbf{Y} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & -1 & 0 & 0 \\ -5 & 2 & 0 & 0 \end{pmatrix}$

die Potenzen $\mathbf{Z}^4 = \mathbf{Z} \cdot \mathbf{Z} \cdot \mathbf{Z} \cdot \mathbf{Z}$ und $\mathbf{Z}^5 = \mathbf{Z}^4 \cdot \mathbf{Z}$ (Tip: Paritionieren Sie \mathbf{X} und \mathbf{Y} !)

Lösung zu Aufgabe 3:

TeilnNr.	Punkte	Aufgabe
		4

Aufgabe 4:

Die L-R-Zerlegung $\mathbf{A} = \mathbf{L} \cdot \mathbf{R}$ einer quadratischen Matrix \mathbf{A} ist

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} \qquad , \qquad R = \begin{pmatrix} 2 & -1 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad .$$

Berechnen Sie

(a) die Determinante von A,

(b) die Lösung des Linearen Gleichungssystems
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 mit $\mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 4 \\ 5 \end{pmatrix}$

Lösung zu Aufgabe 4:

TeilnNr.	Punkte	Aufgabe
		5

Aufgabe 5:

Während der Durchführung des Gauß-Algorithmus bei verschiedenen linearen Gleichungssystemen ergeben sich die folgenden Darstellungen:

Geben Sie jeweils die Lösungsmenge des Gleichungssystems an!

Lösung zu Aufgabe 5:

TeilnNr.	Punkte	Aufgabe
		6

Aufgabe 6:

Die Absätze a_1 , a_2 von 2 Produkten eines Unternehmens in Abhängigkeit ihrer Preise p_1 , p_2 sind

$$a_1 = 8 - 2p_1 + p_2$$

 $a_2 = 9 + 2p_1 - 2p_2$

Die variablen Kosten pro hergestellter (= abgesetzter) Mengeneinheit (ME) betragen $k_1 = 2$ DM/ME bei Produkt 1 bzw. $k_2 = 3$ DM/ME bei Produkt 2. Wie müssen die Preise p1, p2 gewählt werden, damit der Deckungsbeitrag maximal wird? (Deckungsbeitrag = Umsatz - variable Kosten)

Lösung zu Aufgabe 6:

TeilnNr.	Punkte	Aufgabe
		7

Aufgabe 7:

Die Singulärwertzerlegung einer (5 x 3)-Matrix \mathbf{A} , $\mathbf{A} = \mathbf{UWV'}$, ergibt für die Diagonalmatrix \mathbf{W} die Elemente $w_1 = 3$, $w_2 = 2$, $w_3 = 1$.

- (a) Bestimmen Sie den Rang der Matrix A! (Begründung!)
- (b) Welche der Lösungsmengen
 - genau eine Lösung
 - unendlich viele Lösungen
 - keine Lösung

können bei einem linearen Gleichungssystem Ax = b mit obiger Matrix A auftreten?

- (c) Multiplizieren Sie das Gleichungssystem von links mit der Matrix A^+ = $VW^{-1}U'$. Welche Eigenschaft besitzt in diesem Fall
 - die Matrix A⁺ A
 - der Vektor $\mathbf{x}^+ = \mathbf{A}^+ \mathbf{b}$?

Lösung zu Aufgabe 7:

TeilnNr.	Punkte	Aufgabe
		8

Aufgabe 8:

Eine symmetrische Matrix **A** der Ordnung (5 x 5) besitzt die Eigenwerte $\lambda_1,\ldots,\lambda_5$ mit $\lambda_2=\ldots=\lambda_5=0$, $\lambda_1\neq 0$.

- (a) Ist A regulär? (Begründung!)
- (b) Berechnen Sie A, A^2 und A^{10} in Abhängigkeit von λ_1 und dem korrespondierenden Eigenvektor \mathbf{x}^1 !

Lösung zu Aufgabe 8:

TeilnNr.	Punkte	Aufgabe
		9

Aufgabe 9:

Ein Unternehmen stellt die beiden Produkte P_1 und P_2 an drei Fertigungsstellen F_1 , F_2 , F_3 her. Die je Produkt- und Fertigungsstelle benötigten Produktionszeiten, die Kapazitäten der Fertigungsstellen sowie die Deckungsbeiträge (DB) der Produkte sind in folgender Tabelle zusammengefaßt:

	P_1	P_2	Kapazität
$\overline{F_1}$	2	5	40
F_2	2	3	28
F_3	2	1	20
\overline{DB}	2	2	

Bei der Berechnung des DB-maximalen Produktionsprogrammes mit Hilfe des Simplex-Algorithmus ergeben sich die nachstehenden Tabellen:

	BV	x_1	x_2	u_1	u_2	u_3	r.S.	Θ
	u_1	0	0	1	-2	1	4	
(I)	x_2	0	1	0	0,5	-0,5	4	
	x_1	1	0	0	-0,25	0,75	8	
	z	0	0	0	-2 0,5 -0,25 0,5	0,5	24	
		_						
	BV	x_1	x_2	u_1	u_2 u_3	$_3$ r.S.	Θ	
		2	-	1	0 0	40		

- (a) Geben Sie jeweils an. ob es sich um das Anfangstableau, das Endtableau oder ein Zwischentableau handelt!
- (b) Interpretieren Sie das Endtableau:
 - Wie lauten die optimalen Produktionsmengen?
 - Welcher DB wird dabei erzielt?
 - An welcher Fertigungsstelle gibt es noch wieviel freie Kapazität?
- (c) Ermitteln Sie beim Zwischentableau das nächste Pivotelement:

Welche Variable sollte aus der Basis eliminiert werden, welche Variable neu in die Basis aufgenommen werden?

(Pivotelement im entsprechenden Tableau markieren!)

Lösung zu Aufgabe 9: