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We are interested in the limiting eigenvalue distribution of

N ×N random matrices for N →∞.

Typical phenomena for basic random matrix ensembles:

• almost sure convergence to a deterministic limit eigenvalue

distribution

• this limit distribution can be effectively calculated
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Consider selfadjoint Gaussian N ×N random matrix.

We have almost sure convergence (convergence of ”typical” re-

alization) of its eigenvalue distribution to

Wigner’s semicircle.
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Consider Wishart random matrix A = XX∗, where X is N ×M
random matrix with independent Gaussian entries.
Its eigenvalue distribution converges almost surely to

Marchenko-Pastur distribution.
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We want to consider more complicated situations, built out of

simple cases (like Gaussian or Wishart) by doing operations like

• taking the sum of two matrices

• taking the product of two matrices

• taking corners of matrices



Note: If several N × N random matrices A and B are involved
then the eigenvalue distribution of non-trivial functions f(A,B)
(like A+B or AB) will of course depend on the relation between
the eigenspaces of A and of B.

However: we might expect that we have almost sure convergence
to a deterministic result

• if N →∞ and

• if the eigenspaces are almost surely in a ”typical” or

”generic” position.

This is the realm of free probability theory.
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Consider N ×N random matrices A and B such that

• A has an asymptotic eigenvalue distribution for N →∞
B has an asymptotic eigenvalue distribution for N →∞

• A and B are independent
(i.e., entries of A are independent from entries of C)

• B is a unitarily invariant ensemble
(i.e., the joint distribution of its entries does not change
under unitary conjugation)

Then, almost surely, eigenspaces of A and of B are in generic
position.
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In such a generic case we expect that the asymptotic eigenvalue
distribution of functions of A and B should almost surely depend
in a deterministic way on the asymptotic eigenvalue distribution
of A and of B the asymptotic eigenvalue distribution.

Basic examples for such functions:

• the sum

A+B

• the product

AB

• corners of the unitarily invariant matrix B
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dom matrices, N = 2000
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Example: upper left corner of size N/2 × N/2 of a randomly
rotated N ×N projection matrix,
with half of the eigenvalues 0 and half of the eigenvalues 1
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• Do we have a conceptual way of understand-

ing the asymptotic eigenvalue distributions in such

cases?

• Is there an algorithm for actually calculating the

corresponding asymptotic eigenvalue distributions?
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Instead of eigenvalue distribution of typical realization we will

now look at eigenvalue distribution averaged over ensemble.

This has the advantages:

• convergence to asymptotic eigenvalue distribution happens

much faster; very good agreement with asymptotic limit for

moderate N

• theoretically easier to deal with averaged situation than with

almost sure one (note however, this is just for convenience;

the following can also be justified for typical realizations)
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N ×N Gaussian random matrix to semicircle

3 2 1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=5
2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=20
2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N=50

trials=10000



Examples: averaged sums, products, corners for moderate N
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• combinatorial
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Moment Method

eigenvalue distribution
of matrix A

=̂
knowledge of

traces of powers,
tr(Ak)

1

N

(
λk1 + · · ·+ λkN

)
= tr(Ak)

averaged eigenvalue
distribution of

random matrix A
=̂

knowledge of
expectations of

traces of powers,
E[tr(Ak)]



Moment Method

Consider random matrices A and B in generic position.

We want to understand f(A,B) in a uniform way for many f !

We have to understand for all k ∈ N the moments

E
[
tr
(
f(A,B)k

)]
.

Thus we need to understand as basic objects

mixed moments ϕ (An1Bm1An2Bm2 · · · )
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Use following notation:

ϕ(A) := lim
N→∞

E[tr(A)].

Question: If A and B are in generic position, can we understand

ϕ (An1Bm1An2Bm2 · · · )

in terms of

(
ϕ(Ak)

)
k∈N

and
(
ϕ(Bk)

)
k∈N



Example: independent Gaussian random

matrices

Consider two independent Gaussian random matrices A and B

Then, in the limit N →∞, the moments

ϕ (An1Bm1An2Bm2 · · · )
are given by

#
{

non-crossing/planar pairings of pattern

A ·A · · ·A︸ ︷︷ ︸
n1-times

·B ·B · · ·B︸ ︷︷ ︸
m1-times

·A ·A · · ·A︸ ︷︷ ︸
n2-times

·B ·B · · ·B︸ ︷︷ ︸
m2-times

· · · ,

which do not pair A with B

}



Example: ϕ(AABBABBA) = 2

because there are two such non-crossing pairings:

AABBABBA
AABBABBA



Example: ϕ(AABBABBA) = 2

one realization averaged over 1000 realizations
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ϕ (An1Bm1An2Bm2 · · · )
}

= #
{

non-crossing pairings which do not pair A with B

}

implies

ϕ
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)
·
(
Bm1 − ϕ(Bm1) · 1

)
·
(
An2 − ϕ(An2) · 1

)
· · ·

)
= #

{
non-crossing pairings which do not pair A with B,

and for which each blue group and each red group is

connected with some other group
}
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Actual equation for the calculation of the mixed moments

ϕ1 (An1Bm1An2Bm2 · · · )

is different for different random matrix ensembles.

However, the relation between the mixed moments,

ϕ

((
An1 − ϕ(An1) · 1

)
·
(
Bm1 − ϕ(Bm1) · 1

)
· · ·

)
= 0

remains the same for matrix ensembles in generic position and

constitutes the definition of freeness.



Actual equation for the calculation of the mixed moments

ϕ1 (An1Bm1An2Bm2 · · · )

is different for different random matrix ensembles.

However, the relation between the mixed moments,

ϕ

((
An1 − ϕ(An1) · 1

)
·
(
Bm1 − ϕ(Bm1) · 1

)
· · ·

)
= 0

remains the same for matrix ensembles in generic position and

constitutes the definition of freeness.



Definition [Voiculescu 1985]: A and B are free (with respect
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ϕ

((
An1−ϕ(An1) ·1

)
·
(
Bm1−ϕ(Bm1) ·1

)
·
(
An2−ϕ(An2) ·1

)
· · ·

)
= 0

ϕ

((
Bn1 − ϕ(Bn1) · 1

)
·
(
Am1 − ϕ(Am1) · 1

)
·
(
Bn2 − ϕ(Bn2) · 1

)
· · ·

)
= 0

ϕ

(
alternating product in centered words in A and in B
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Theorem [Voiculescu 1991]: Consider N×N random matrices
A and B such that

• A has an asymptotic eigenvalue distribution for N →∞
B has an asymptotic eigenvalue distribution for N →∞

• A and B are independent
(i.e., entries of A are independent from entries of C)

• B is a unitarily invariant ensemble
(i.e., the joint distribution of its entries does not change
under unitary conjugation)

Then, for N →∞, A and B are free.



Definition of Freeness

Let (A, ϕ) be non-commutative probability space, i.e., A is
a unital algebra and ϕ : A → C is unital linear functional (i.e.,
ϕ(1) = 1)

Unital subalgebras Ai (i ∈ I) are free or freely independent, if
ϕ(a1 · · · an) = 0 whenever

• ai ∈ Aj(i), j(i) ∈ I ∀i, j(1) 6= j(2) 6= · · · 6= j(n)

• ϕ(ai) = 0 ∀i

Random variables x1, . . . , xn ∈ A are free, if their generated unital
subalgebras Ai := algebra(1, xi) are so.



What is Freeness?

Freeness between A and B is an infinite set of equations relating

various moments in A and B:

ϕ

(
p1(A)q1(B)p2(A)q2(B) · · ·

)
= 0

Basic observation: freeness between A and B is actually a rule

for calculating mixed moments in A and B from the moments

of A and the moments of B:

ϕ

(
An1Bm1An2Bm2 · · ·

)
= polynomial

(
ϕ(Ai), ϕ(Bj)

)



Example:

ϕ

((
An − ϕ(An)1

)(
Bm − ϕ(Bm)1

))
= 0,

thus

ϕ(AnBm)− ϕ(An · 1)ϕ(Bm)− ϕ(An)ϕ(1 ·Bm) + ϕ(An)ϕ(Bm)ϕ(1 · 1) = 0,

and hence

ϕ(AnBm) = ϕ(An) · ϕ(Bm)



Example:

ϕ

((
An − ϕ(An)1

)(
Bm − ϕ(Bm)1

))
= 0,

thus

ϕ(AnBm)−ϕ(An·1)ϕ(Bm)−ϕ(An)ϕ(1·Bm)+ϕ(An)ϕ(Bm)ϕ(1·1) = 0,

and hence

ϕ(AnBm) = ϕ(An) · ϕ(Bm)



Example:

ϕ

((
An − ϕ(An)1

)(
Bm − ϕ(Bm)1

))
= 0,

thus

ϕ(AnBm)−ϕ(An·1)ϕ(Bm)−ϕ(An)ϕ(1·Bm)+ϕ(An)ϕ(Bm)ϕ(1·1) = 0,

and hence

ϕ(AnBm) = ϕ(An) · ϕ(Bm)



Freeness is a rule for calculating mixed moments, analogous

to the concept of independence for random variables.

Thus freeness is also called free independence



Freeness is a rule for calculating mixed moments, analogous
to the concept of independence for random variables.

Note: free independence is a different rule from classical indepen-
dence; free independence occurs typically for non-commuting
random variables, like operators on Hilbert spaces or (random)
matrices

Example:

ϕ

((
A− ϕ(A)1

)
·
(
B − ϕ(B)1

)
·
(
A− ϕ(A)1

)
·
(
B − ϕ(B)1

))
= 0,

which results in

ϕ(ABAB) = ϕ(AA) · ϕ(B) · ϕ(B) + ϕ(A) · ϕ(A) · ϕ(BB)

− ϕ(A) · ϕ(B) · ϕ(A) · ϕ(B)



Freeness is a rule for calculating mixed moments, analogous
to the concept of independence for random variables.

Note: free independence is a different rule from classical indepen-
dence; free independence occurs typically for non-commuting
random variables, like operators on Hilbert spaces or (random)
matrices

Example:

ϕ

((
A− ϕ(A)1

)
·
(
B − ϕ(B)1

)
·
(
A− ϕ(A)1

)
·
(
B − ϕ(B)1

))
= 0,

which results in

ϕ(ABAB) = ϕ(AA) · ϕ(B) · ϕ(B) + ϕ(A) · ϕ(A) · ϕ(BB)

− ϕ(A) · ϕ(B) · ϕ(A) · ϕ(B)



Motivation for the combinatorics of freeness:

the free (and classical) CLT

Consider a1, a2, · · · ∈ (A, ϕ) which are

• identically distributed

• centered and normalized: ϕ(ai) = 0 and ϕ(a2
i ) = 1

• either classically independent or freely independent

What can we say about

Sn :=
a1 + · · ·+ an√

n

n→∞−→ ???



We say that Sn converges (in distribution) to s if

ϕ(Smn ) = ϕ(sm) ∀m ∈ N

We have

ϕ(Smn ) =
1

nm/2
ϕ
[
(a1 + · · · an)m

]

=
1

nm/2

n∑
i(1),...,i(m)=1

ϕ[ai(1) · · · ai(m)]

Note:

ϕ[ai(1) · · · ai(m)] = ϕ[aj(1) · · · aj(m)]

whenever

ker i = ker j



For example, i = (1,3,1,5,3) and j = (3,4,3,6,4):

ϕ[a1a3a1a5a3] = ϕ[a3a4a3a6a4]

because independence/freeness allows to express

ϕ[a1a3a1a5a3] = polynomial
(
ϕ(a1), ϕ(a2

1), ϕ(a3), ϕ(a2
3), ϕ(a5)

)
ϕ[a3a4a3a6a4] = polynomial

(
ϕ(a3), ϕ(a2

3), ϕ(a4), ϕ(a2
4), ϕ(a6)

)
and

ϕ(a1) = ϕ(a3), ϕ(a2
1) = ϕ(a2

3)

ϕ(a3) = ϕ(a4), ϕ(a2
3) = ϕ(a2

4), ϕ(a5) = ϕ(a6)

We put

κπ := ϕ[a1a3a1a5a3] where π := ker i = ker j = {{1,3}, {2,5}, {4}}

π ∈ P(5) is a partition of {1,2,3,4,5}.



Thus

ϕ(Smn ) =
1

nm/2

n∑
i(1),...,i(m)=1

ϕ[ai(1) · · · ai(m)]

=
1

nm/2

∑
π∈P(m)

κπ ·#{i : ker i = π}

Note:

#{i : ker i = π} = n(n− 1) · · · (n−#π − 1) ∼ n#π

So

ϕ(Smn ) ∼
∑

π∈P(m)

κπ · n#π−m/2



No singletons in the limit

Consider π ∈ P(m) with singleton:

π = {. . . , {k}, . . . },

thus

κπ = ϕ(ai(1) · · · ai(k) · · · ai(m))

= ϕ(ai(1) · · · ai(k−1)ai(k+1) · · · ai(m)) · ϕ(ai(k))︸ ︷︷ ︸
=0

Thus: κπ = 0 if π has singleton; i.e.,

κπ 6= 0 =⇒ π = {V1, . . . , Vr} with #Vj ≥ 2∀j

=⇒ r = #π ≤
m

2



So in

ϕ(Smn ) ∼
∑

π∈P(m)

κπ · n#π−m/2

only those π survive for n→∞ with

• π has no singleton, i.e., no block of size 1

• π has exactly m/2 blocks

Such π are exactly those, where each block has size 2, i.e.,

π ∈ P2(m) := {π ∈ P(m) | π is pairing}



Thus we have:

lim
n→∞ϕ(Smn ) =

∑
π∈P2(m)

κπ

In particular: odd moments are zero (because no pairings of odd

number of elements), thus limit distribution is symmetric

Question: What are the even moments?

This depends on the κπ’s.

The actual value of those is now different for the classical and

the free case!



Classical CLT: assume ai are independent

If the ai commute and are independent, then

κπ = ϕ(ai(1) · · · ai(2k)) = 1 ∀π ∈ P2(2k)

Thus

lim
n→∞ϕ(Smn ) = #P2(m) =

0, m odd

(m− 1)(m− 3) · · ·5 · 3 · 1, m even

Those limit moments are the moments of a Gaussian distribution

of variance 1.



Free CLT: assume ai are free

If the ai are free, then, for π ∈ P2(2k),

κπ =

0, π is crossing

1, π is non-crossing

E.g.,

κ{1,6},{2,5},{3,4} = ϕ(a1a2a3a3a2a1)

= ϕ(a3a3) · ϕ(a1a2a2a1)

= ϕ(a3a3) · ϕ(a2a2) · ϕ(a1a1)

= 1

but

κ{1,5},{2,3},{4,6}} = ϕ(a1a2a2a3a1a3)

= ϕ(a2a2) · ϕ(a1a3a1a3)︸ ︷︷ ︸
0



Free CLT: assume ai are free

Put

NC2(m) := {π ∈ P2(m) | π is non-crossing}

Thus

lim
n→∞ϕ(Smn ) = #NC2(m) =

0, m odd

ck = 1
k+1

(
2k
k

)
, m = 2k even

Those limit moments are the moments of a semicircular distri-

bution of variance 1,

lim
n→∞ϕ(Smn ) =

1

2π

∫ 2

−2
tm
√

4− t2dt



How to recognize the Catalan numbers ck

Put

ck := #NC2(2k).

We have

ck =
∑

π∈NC(2k)

1 =
k∑
i=1

∑
π={1,2i}∪π1∪π2

1 =
k∑
i=1

ci−1ck−i

This recursion, together with c0 = 1, c1 = 1, determines the

sequence of Catalan numbers:

{ck} = 1,1,2,5,14,42,132,429, ....



Understanding the freeness rule:

the idea of cumulants

• write moments in terms of other quantities, which we call

free cumulants

• freeness is much easier to describe on the level of free cu-

mulants: vanishing of mixed cumulants

• relation between moments and cumulants is given by sum-

ming over non-crossing or planar partitions



Non-crossing partitions

A partition of {1, . . . , n} is a decomposition π = {V1, . . . , Vr} with

Vi 6= ∅, Vi ∩ Vj = ∅ (i 6= y),
⋃
i

Vi = {1, . . . , n}

The Vi are the blocks of π ∈ P(n).

π is non-crossing if we do not have

p1 < q1 < p2 < q2

such that p1, p2 are in same block, q1, q2 are in same block, but
those two blocks are different.

NC(n) := {non-crossing partitions of {1,. . . ,n}}

NC(n) is actually a lattice with refinement order.



Moments and cumulants

For unital linear functional

ϕ : A → C

we define cumulant functionals κn (for all n ≥ 1)

κn : An → C

as multi-linear functionals by moment-cumulant relation

ϕ(A1 · · ·An) =
∑

π∈NC(n)

κπ[A1, . . . , An]

Note: classical cumulants are defined by a similar formula, where

only NC(n) is replaced by P(n)



A1

ϕ(A1) =κ1(A1)

A1A2

ϕ(A1A2) = κ2(A1, A2)

+ κ1(A1)κ1(A2)

thus

κ2(A1, A2) = ϕ(A1A2)− ϕ(A1)ϕ(A2)



A1A2A3

ϕ(A1A2A3) = κ3(A1, A2, A3)

+ κ1(A1)κ2(A2, A3)

+ κ2(A1, A2)κ1(A3)

+ κ2(A1, A3)κ1(A2)

+ κ1(A1)κ1(A2)κ1(A3)



ϕ(A1A2A3A4) = + + + +

+ + + + +

+ + + +

= κ4(A1, A2, A3, A4) + κ1(A1)κ3(A2, A3, A4)

+ κ1(A2)κ3(A1, A3, A4) + κ1(A3)κ3(A1, A2, A4)

+ κ3(A1, A2, A3)κ1(A4) + κ2(A1, A2)κ2(A3, A4)

+ κ2(A1, A4)κ2(A2, A3) + κ1(A1)κ1(A2)κ2(A3, A4)

+ κ1(A1)κ2(A2, A3)κ1(A4) + κ2(A1, A2)κ1(A3)κ1(A4)

+ κ1(A1)κ2(A2, A4)κ1(A3) + κ2(A1, A4)κ1(A2)κ1(A3)

+ κ2(A1, A3)κ1(A2)κ1(A4) + κ1(A1)κ1(A2)κ1(A3)κ1(A4)



Freeness =̂ vanishing of mixed cumulants

Theorem [Speicher 1994]: The fact that A and B are free is

equivalent to the fact that

κn(C1, . . . , Cn) = 0

whenever

• n ≥ 2

• Ci ∈ {A,B} for all i

• there are i, j such that Ci = A, Cj = B



Freeness =̂ vanishing of mixed cumulants

free product =̂ direct sum of cumulants

ϕ(An) given by sum over blue planar diagrams

ϕ(Bm) given by sum over red planar diagrams

then: for A and B free, ϕ(An1Bm1An2 · · · ) is given by sum over

planar diagrams with monochromatic (blue or red) blocks



Vanishing of Mixed Cumulants

ϕ(ABAB) =

κ1(A)κ1(A)κ2(B,B)+κ2(A,A)κ1(B)κ1(B)+κ1(A)κ1(B)κ1(A)κ1(B)

ABAB ABAB ABAB



Sum of Free Variables

Consider A, B free.

Then, by freeness, the moments of A+B are uniquely determined

by the moments of A and the moments of B.

Notation: We say the distribution of A+B is the

free convolution

of the distribution of A and the distribution of B,

µA+B = µA � µB.



Sum of Free Variables

In principle, freeness determines this, but the concrete nature of
this rule on the level of moments is not apriori clear.

Example:

ϕ
(
(A+B)1

)
= ϕ(A) + ϕ(B)

ϕ
(
(A+B)2

)
= ϕ(A2) + 2ϕ(A)ϕ(B) + ϕ(B2)

ϕ
(
(A+B)3

)
= ϕ(A3) + 3ϕ(A2)ϕ(B) + 3ϕ(A)ϕ(B2) + ϕ(B3)

ϕ
(
(A+B)4

)
= ϕ(A4) + 4ϕ(A3)ϕ(B) + 4ϕ(A2)ϕ(B2)

+ 2
(
ϕ(A2)ϕ(B)ϕ(B) + ϕ(A)ϕ(A)ϕ(B2)

− ϕ(A)ϕ(B)ϕ(A)ϕ(B)
)

+ 4ϕ(A)ϕ(B3) + ϕ(B4)



Sum of Free Variables

Corresponding rule on level of free cumulants is easy: If A and

B are free then

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

+κn(. . . , A,B, . . . ) + · · ·



Sum of Free Variables

Corresponding rule on level of free cumulants is easy: If A and

B are free then

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

+κn(. . . , A,B, . . . ) + · · ·



Sum of Free Variables

Corresponding rule on level of free cumulants is easy: If A and

B are free then

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

i.e., we have additivity of cumulants for free variables

κA+B
n = κAn + κBn

Also: Combinatorial relation between moments and cumulants

can be rewritten easily as a relation between corresponding for-

mal power series.



Sum of Free Variables

Corresponding rule on level of free cumulants is easy: If A and

B are free then

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

i.e., we have additivity of cumulants for free variables

κA+B
n = κAn + κBn

Also: Combinatorial relation between moments and cumu-

lants can be rewritten easily as a relation between corre-

sponding formal power series.



Sum of Free Variables

Consider one random variable A ∈ A and define their
Cauchy transform G and their R-transform R by

G(z) =
1

z
+
∞∑
n=1

ϕ(An)

zn+1
, R(z) =

∞∑
n=1

κn(A, . . . , A)zn−1

Theorem [Voiculescu 1986, Speicher 1994]: Then we have

• 1
G(z) +R(G(z)) = z

• RA+B(z) = RA(z) +RB(z) if A and B are free



This, together with the relation between Cauchy transform and

R-transform and with the Stieltjes inversion formula, gives an

effective algorithm for calculating free convolutions, i.e., the

asymptotic eigenvalue distribution of sums of random matri-

ces in generic position:

A  GA  RA

↓

RA +RB = RA+B  GA+B  A+B

↑
B  GB  RB



Example: Wigner + Wishart (M = 2N)
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averaged Wigner + Wishart; N=100
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... one realization ...

trials=4000 N=3000



Sum of Free Variables

If A and B are free, then the

free (additive) convolution

of its distributions is given by

µA+B = µA � µB.

How can we describe this???



On the level of moments this is getting complicated ....

ϕ
(
(A+B)1

)
= ϕ(A) + ϕ(B)

ϕ
(
(A+B)2

)
= ϕ(A2) + 2ϕ(A)ϕ(B) + ϕ(B2)

ϕ
(
(A+B)3

)
= ϕ(A3) + 3ϕ(A2)ϕ(B) + 3ϕ(A)ϕ(B2) + ϕ(B3)

ϕ
(
(A+B)4

)
= ϕ(A4) + 4ϕ(A3)ϕ(B) + 4ϕ(A2)ϕ(B2)

+ 2
(
ϕ(A2)ϕ(B)ϕ(B) + ϕ(A)ϕ(A)ϕ(B2)

− ϕ(A)ϕ(B)ϕ(A)ϕ(B)
)

+ 4ϕ(A)ϕ(B3) + ϕ(B4)

... and its better to consider cumulants.



Sum of Free Variables

Consider free cumulants

κAn := κn(A,A, . . . , A)

Then we have, for A and B free:

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

+κn(. . . , A,B, . . . ) + · · ·
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κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

i.e., we have additivity of cumulants for free variables

κA+B
n = κAn + κBn

But: how good do we understand the relation between

moments and free cumulants???
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κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

i.e., we have additivity of cumulants for free variables

κA+B
n = κAn + κBn

But: how good do we understand the relation between

moments and free cumulants???



Relation between moments and free cumulants

We have

mn := ϕ(An) moments

and

κn := κn(A,A, . . . , A) free cumulants

Combinatorially, the relation between them is given by

mn = ϕ(An) =
∑

π∈NC(n)

κπ

Example:

m1 = κ1, m2 = κ2 + κ2
1, m3 = κ3 + 3κ2κ1 + κ3

1



m3 = κ + κ + κ + κ + κ = κ3 + 3κ2κ1 + κ3
1

Theorem [Speicher 1994]: Consider formal power series

M(z) = 1 +
∞∑
k=1

mnz
n, C(z) = 1 +

∞∑
k=1

κnz
n

Then the relation

mn =
∑

π∈NC(n)

κπ

between the coefficients is equivalent to the relation

M(z) = C[zM(z)]



Proof

First we get the following recursive relation between cumulants

and moments

mn =
∑

π∈NC(n)

κπ

=
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

∑
π1∈NC(i1)

· · ·
∑

πs∈NC(is)

κsκπ1 · · ·κπs

=
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis



mn =
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis

Plugging this into the formal power series M(z) gives

M(z) = 1 +
∑
n
mnz

n

= 1 +
∑
n

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

ksz
smi1z

i1 · · ·misz
is

= 1 +
∞∑
s=1

κsz
s
(
M(z)

)s
= C[zM(z)]



Remark on classical cumulants

Classical cumulants ck are combinatorially defined by

mn =
∑

π∈P(n)

cπ

In terms of generating power series

M̃(z) = 1 +
∞∑
n=1

mn

n!
zn, C̃(z) =

∞∑
n=1

cn

n!
zn

this is equivalent to

C̃(z) = log M̃(z)



From moment series to Cauchy transform

Instead of M(z) we consider Cauchy transform

G(z) := ϕ(
1

z −A
) =

∫ 1

z − t
dµA(t) =

∑ ϕ(An)

zn+1
=

1

z
M(1/z)

and instead of C(z) we consider R-transform

R(z) :=
∑
n≥0

κn+1z
n =

C(z)− 1

z

Then M(z) = C[zM(z)] becomes

R[G(z)] +
1

G(z)
= z or G[R(z) + 1/z] = z



What is advantage of G(z) over M(z)?

For any probability measure µ is its Cauchy transform

G(z) :=
∫ 1

z − t
dµ(t)

an analytic function G : C+ → C− and we can recover µ from G

by Stieltjes inversion formula

dµ(t) = −
1

π
lim
ε→0
=G(t+ iε)dt



Example: semicircular distribution µs

µs has moments given by the Catalan numbers or, equivalently,
has cumulants

κn =

0, n 6= 2

1, n = 2

(because mn =
∑
π∈NC2(n) κπ says that κπ = 0 for π ∈ NC(n)

which is not a pairing), thus

R(z) =
∑
n≥0

κn+1z
n = κ2 · z = z

and hence

z = R[G(z)] +
1

G(z)
= G(z) +

1

G(z)

or G(z)2 + 1 = zG(z)



G(z)2 + 1 = zG(z) thus G(z) =
z ±

√
z4 − 4

2

We have ”-”, because G(z) ∼ 1/z for z →∞; then

dµs(t) = −
1

π
=
(t−√t2 − 4

2

)
dt

=


1

2π

√
4− t2dt, if t ∈ [−2,2]

0, otherwise
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What is the free Binomial
(

1
2δ−1 + 1

2δ+1
)�2

µ :=
1

2
δ−1 +

1

2
δ+1, ν := µ � µ

Then Gµ(z) =
∫ 1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1

and so z = Gµ[Rµ(z) + 1/z] =
Rµ(z) + 1/z

(Rµ(z) + 1/z)2 − 1

thus Rµ(z) =

√
1 + 4z2 − 1

2z

and so Rν(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z



Rν(z) =

√
1 + 4z2 − 1

z
gives Gν(z) =

1√
z2 − 4

and thus

dν(t) = −
1

π
=

1√
t2 − 4

dt =


1

π
√

4−t2
, |t| ≤ 2

0, otherwise

So (1

2
δ−1 +

1

2
δ+1

)�2
= ν = arcsine-distribution
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2800 eigenvalues of A + UBU∗, where A and B are diagonal
matrices with 1400 eigenvalues +1 and 1400 eigenvalues -1,
and U is a randomly chosen unitary matrix



Lessons to learn

Free convolution of discrete distributions is in general non dis-

crete

Since it is true that

δx � δy = δx+y

we see, in particular, that � is not linear, i.e, for α+ β = 1

(αµ1 + βµ2) � ν 6= α(µ1 � ν) + β(µ2 � ν)

Non-commutativity matters: the sum of two commuting pro-

jections is a quite easy object, the sum of two non-commuting

projections is much harder to grasp



Product of Free Variables

Consider A, B free.

Then, by freeness, the moments of AB are uniquely determined

by the moments of A and the moments of B.

Notation: We say the distribution of AB is the

free multiplicative convolution

of the distribution of A and the distribution of B,

µAB = µA � µB.



Caveat: AB not selfadjoint

Note: � is in general not operation on probability measures on
R. Even if both A and B are selfadjoint, AB is only selfadjoint if
A and B commute (which they don’t, if they are free)

But: if B is positive, then we can consider B1/2AB1/2 instead of
AB. Since A and B are free it follows that both have the same
moments; e.g.,

ϕ(B1/2AB1/2) = ϕ(B1/2B1/2)ϕ(A) = ϕ(B)ϕ(A) = ϕ(AB)

So the ”right” definition is

µA � µB = µ
B1/2AB1/2.

If we also restrict A to be positive, then this gives a binary
operation on probability measures on R+



Meaning of � for random matrices

If A and B are symmetric matrices with positive eigenvalues,
then the eigenvalues of AB = (AB1/2)B1/2 are the same as the
eigenvalues of B1/2(AB1/2) and thus are necessarily also real and
positive. If A and B are asymptotically free, the eigenvalues of
AB are given by µA � µB.

However: this is not true any more for three or more matrices!!!
If A, B, C are symmetric matrices with positive eigenvalues, then
there is no reason that the eigenvalues of ABC are real.

If A,B,C are asymptotically free, then still the moments of ABC
are the same as the moments of C1/2B1/2AB1/2C1/2, i.e., the
same as the moments of µA�µB�µC. But since the eigenvalues
of ABC are not real, the knowledge of the moments is not enough
to determine them.
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Back to the general theory of �

In principle, the moments of AB are, for A and B free, determined
by the moments of A and the moments of B; but again the
concrete nature of this rule on the level of moments is not clear...

ϕ
(
(AB)1

)
= ϕ(A)ϕ(B)

ϕ
(
(AB)2

)
= ϕ(A2)ϕ(B)2 + ϕ(A)2ϕ(B2)− ϕ(A)2ϕ(B)2

ϕ
(
(AB)3

)
= ϕ(A3)ϕ(B)3 + ϕ(A)3ϕ(B3) + 3ϕ(A)ϕ(A2)ϕ(B)ϕ(B2)

− 3ϕ(A)ϕ(A2)ϕ(B)3 − 3ϕ(A)3ϕ(B)ϕ(B2) + 2ϕ(A)3ϕ(B)3

... so let’s again look on cumulants.



Product of Free Variables

Corresponding rule on level of free cumulants is relatively easy

(at least conceptually): If A and B are free then

κn(AB,AB, . . . , AB) =
∑

π∈NC(n)

κπ[A,A, . . . , A] · κK(π)[B,B, . . . , B],

where K(π) is the Kreweras complement of π: K(π) is the

maximal σ with

π ∈ NC(blue), σ ∈ NC(red), π ∪ σ ∈ NC(blue ∪ red)

ABABAB

K( ) =



Product of Free Variables

Corresponding rule on level of free cumulants is relatively easy

(at least conceptually): If A and B are free then

κn(AB,AB, . . . , AB) =
∑

π∈NC(n)

κπ[A,A, . . . , A] · κK(π)[B,B, . . . , B],

where K(π) is the Kreweras complement of π: K(π) is the

maximal σ with

π ∈ NC(blue), σ ∈ NC(red), π ∪ σ ∈ NC(blue ∪ red)

ABABAB

K( ) =



ABABAB



ABABAB



ABABAB

κ3(A,A,A)

κ2(A,A)κ1(A)

κ2(A,A)κ1(A)

κ2(A,A)κ1(A)

κ1(A)κ1(A)κ1(A)



ABABAB

κ3(A,A,A) κ1(B)κ1(B)κ1(B)

κ2(A,A)κ1(A) κ2(B,B)κ1(B)

κ2(A,A)κ1(A) κ2(B,B)κ1(B)

κ2(A,A)κ1(A) κ2(B,B)κ1(B)

κ1(A)κ1(A)κ1(A) κ3(B,B,B)



Product of Free Variables

Theorem [Voiculescu 1987; Haagerup 1997; Nica,

Speicher 1997]:

Put

MA(z) :=
∞∑

m=1

ϕ(Am)zm

and define

SA(z) :=
1 + z

z
M<−1>
A (z) S-transform of A

Then: If A and B are free, we have

SAB(z) = SA(z) · SB(z).



Example: Wishart x Wishart (M = 5N)
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... one realization ...

trials=10000 N=2000



Corners of Random Matrices

Theorem [Nica, Speicher 1996]: The asymptotic eigenvalue

distribution of a corner B of ratio α of a unitarily invariant random

matrix A is given by

µB = µ
�1/α
αA

In particular, a corner of size α = 1/2, has up to rescaling the

same distribution as µA � µA.



Corners of Random Matrices

Theorem [Nica, Speicher 1996]: The asymptotic eigenvalue

distribution of a corner B of ratio α of a unitarily invariant random

matrix A is given by

µB = µ
�1/α
αA

In particular, a corner of size α = 1/2, has up to rescaling the

same distribution as µA � µA.



Upper left corner of size N/2×N/2 of a projection matrix, with
N/2 eigenvalues 0 and N/2 eigenvalues 1 is, up to rescaling, the
same as a free Bernoulli, i.e., the arcsine distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

averaged upper corner; N=64
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... one realization ...

trials=5000 N=2048



This actually shows

Theorem [Nica, Speicher 1996]: For any probability measure

µ on R, there exists a semigroup (µ�t)t≥1 of probability measures,

such that µ�1 = µ and

µ�s � µ�t = µ�(s+t) (s, t ≥ 1)

(Note: if this µ�t exists for all t ≥ 0, then µ is freely infinitely

divisible.)

In the classical case, such a statement is not true!



Polynomials of independent Gaussian rm

Consider m independent Gaussian random matrices

X
(1)
N , . . . , X

(m)
N .

They converge, for N →∞, to m free semicircular elements

s1, . . . , sm.

In particular, for any selfadjoint polynomial in m non-commuting
variables

p(X(1)
N , . . . , X

(m)
N )→ p(s1, . . . , sm)

Question: What can we say about the distribution of
p(s1, . . . , sm)?



Eigenvalue distributions of

p(x1) = x2
1, p(x1, x2) = x1x2 + x2x1

p(x1, x2, x3) = x1x
2
2x1 + x1x

2
3x1 + 2x2

where x1, x2, and x3 are independent 4000 × 4000 Gaussian
random matrices; in the first two cases the asymptotic eigenvalue
distribution can be calculated by free probability tools as the solid
curve, for the third case no explicit solution exists.



What are qualitative features of such

distributions?

What can we say about distribution of

lim
N→∞

p(X(1)
N , . . . , X

(m)
N ) = p(s1, . . . , sm)

for arbitrary polynomials p?

Conjectures:

• It has no atoms.

• It has a density with respect to Lebesgue measure.

• This density has some (to be specified) regularity properties.



How to attack such questions?

... maybe with ...

• free stochastic analysis

• free Malliavin calculus



A free Brownian motion is given by a family
(
S(t)

)
t≥0
⊂ (A, ϕ)

of random variables (A von Neumann algebra, ϕ faithful trace),
such that

• S(0) = 0

• each increment S(t)− S(s) (s < t) is semicircular with mean
= 0 and variance = t− s, i.e.,

dµS(t)−S(s)(x) =
1

2π(t− s)

√
4(t− s)− x2dx

• disjoint increments are free: for 0 < t1 < t2 < · · · < tn,

S(t1), S(t2)− S(t1), . . . , S(tn)− S(tn−1) are free



A free Brownian motion is given

• abstractly, by a family
(
S(t)

)
t≥0

of random variables with

– S(0) = 0

– each S(t)− S(s) (s < t) is (0, t− s)-semicircular

– disjoint increments are free

• concretely, by the sum of creation and annihilation operators
on the full Fock space

• asymptotically, as the limit of matrix-valued (Dyson) Brow-
nian motions



Free Brownian motions as matrix limits

Let (XN(t))t≥0 be a symmetric N × N-matrix-valued Brownian
motion, i.e.,

XN(t) =

B11(t) . . . B1N(t)
... . . . ...

BN1(t) . . . BNN(t)

 , where

• Bij are, for i ≥ j, independent classical Brownian motions

• Bij(t) = Bji(t).

Then,
(
XN(t)

)
t≥0

distr−→
(
S(t)

)
t≥0, in the sense that almost surely

lim
N→∞

tr
(
XN(t1) · · ·XN(tn)

)
= ϕ

(
S(t1) · · ·S(tn)

)
∀0 ≤ t1, t2, . . . , tn



Intermezzo on realisations on Fock spaces

Classical Brownian motion can be realized quite canonically by

operators on the symmetric Fock space.

Similarly, free Brownian motion can be realized quite canonically

by operators on the full Fock space



First: symmetric Fock space ...

For Hilbert space H put

Fs(H) :=
∞⊕
n≥0

H⊗symn, where H⊗0 = CΩ

with inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉sym = δnm
∑
π∈Sn

n∏
i=1

〈fi, gπ(i)〉.

Define creation and annihilation operators

a∗(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn

a(f)f1 ⊗ · · · ⊗ fn =
n∑
i=1

〈f, fi〉f1 ⊗ · · · ⊗ f̌i ⊗ · · · ⊗ fn

a(f)Ω = 0



... and classical Brownian motion

Put ϕ(·) := 〈Ω, ·Ω〉, x(f) := a(f) + a∗(f)

then (x(f))f∈H,f real is Gaussian family with covariance

ϕ
(
x(f)x(g)

)
= 〈f, g〉.

In particular, choose H := L2(R+), ft := 1[0,t), then

Bt := a(1[0,t)) + a∗(1[0,t)) is classical Brownian motion,

meaning

ϕ(Bt1 · · ·Btn) = E[Wt1 · · ·Wtn] ∀0 ≤ t1, . . . , tn



Now: full Fock space ...

For Hilbert space H put

F(H) :=
∞⊕
n≥0

H⊗n, where H⊗0 = CΩ

with usual inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉 = δnm〈f1, g1〉 · · · 〈fn, gn〉.

Define creation and annihilation operators

b∗(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn
b(f)f1 ⊗ · · · ⊗ fn = 〈f, f1〉f2 ⊗ · · · ⊗ fn

b(f)Ω = 0



... and free Brownian motion

Put ϕ(·) := 〈Ω, ·Ω〉, x(f) := b(f) + b∗(f)

then (x(f))f∈H,f real is semicircular family with covariance

ϕ
(
x(f)x(g)

)
= 〈f, g〉.

In particular, choose H := L2(R+), ft := 1[0,t), then

St := b(1[0,t)) + b∗(1[0,t)) is free Brownian motion.



Semicircle as real part of one-sided shift

Consider case of one-dimensional H. Then this reduces to

basis: Ω = e0, e1, e2, e3, . . .

and one-sided shift l

len = en+1, l∗en =

en−1, n ≥ 1

0, n = 0

One-sided shift is canonical non-unitary isometry

l∗l = 1, l∗l 6= 1 (= 1− projection on Ω)

With ϕ(a) := 〈Ω, aΩ〉 we claim: distribution of l+ l∗ is semicircle.



Moments of l + l∗

In the calculation of 〈Ω, (l + l∗)nΩ〉 only such products in cre-

ation and annihilation contribute, where we never annihilate the

vacuum, and where we start and end at the vacuum. So odd

moments are zero.

Examples

ϕ
(
(l + l∗)2

)
: l∗l

ϕ
(
(l + l∗)4

)
: l∗l∗ll, l∗ll∗l

ϕ
(
(l + l∗)6

)
: l∗l∗l∗lll, l∗ll∗l∗ll, l∗ll∗ll∗l, l∗l∗ll∗ll, l∗l∗lll∗l

Those contributing terms are in clear bijection with non-crossing

pairings (or with Dyck paths).



(l∗, l∗, l∗, l, l, l) ���
���
���@@R

@@R
@@R

(l∗, l∗, l, l∗, l, l) ���
���@@R���@@R

@@R

(l∗, l, l∗, l∗, l, l) ���
���@@R

@@R���@@R

(l∗, l∗, l, l, l∗, l) ���@@R���
���@@R

@@R

(l∗, l, l∗, l, l∗, l) ���@@R���@@R���@@R



Stochastic Analysis on ”Wigner” space

Starting from a free Brownian motion
(
S(t)

)
t≥0

we define mul-

tiple “Wigner” integrals

I(f) =
∫
· · ·

∫
f(t1, . . . , tn)dS(t1) . . . dS(tn)

for scalar-valued functions f ∈ L2(Rn+), by avoiding the diagonals,

i.e. we understand this as

I(f) =
∫
· · ·

∫
all ti distinct

f(t1, . . . , tn)dS(t1) . . . dS(tn)



Definition of Wigner integrals

More precisely: for f of form

f = 1[s1,t1]×···×[sn,tn]

for pairwisely disjoint intervals [s1, t1], . . . , [sn, tn] we put

I(f) := (St1 − Ss1) · · · (Stn − Ssn)

Extend I(·) linearly over set of all off-diagonal step functions

(which is dense in L2(Rn+). Then observe Ito-isometry

ϕ[I(g)∗I(f)] = 〈f, g〉L2(Rn+)

and extend I to closure of off-diagonal step functions, i.e., to

L2(Rn+).



Note: free stochastic integrals are usually
bounded operators

Free Haagerup Inequality [Bozejko 1991; Biane, Speicher
1998]:

∥∥∥∫ · · · ∫ f(t1, . . . , tn)dS(t1) . . . dS(tn)
∥∥∥ ≤ (n+ 1)‖f‖L2(Rn+)



Intermezzo: combinatorics and norms

Consider free semicirculars s1, s2, . . . of variance 1. Since (s1 +

· · ·+ sn)/
√
n is again a semicircular element of variance 1 (and

thus of norm 2), we have∥∥∥∥∥∥
(
s1 + · · ·+ cn√

n

)k∥∥∥∥∥∥ = 2k

The free Haagerup inequality says that this is drastically reduced

if we subtract the diagonals, i.e.,

lim
n→∞

∥∥∥∥∥∥∥∥∥
1

nk/2

n∑
i(1),...,ı(k)=1

all i(.) different

si(1) · · · si(k)

∥∥∥∥∥∥∥∥∥ = k + 1



Intermezzo: combinatorics and norms

Note: one can calculate norms from asymptotic knowledge of
moments!

If x is selfadjoint and ϕ faithful (as our ϕ for the free Brownian
motion is) then one has

‖x‖ = lim
p→∞ ‖x‖p = lim

p→∞
p
√
ϕ(|x|p) = lim

m→∞
2m
√
ϕ(x2m)

So, if s is a semicircular element, then

ϕ(s2m) = cm =
1

1 +m

(2m
m

)
∼ 4m,

thus

‖s‖ = lim
m→∞

2m
√
cm ∼ 2m√4m = 2



Exercise: combinatorics and norms

Consider free semicirculars s1, s2, . . . of variance 1. Prove by

considering moments that∥∥∥∥∥∥1

n

n∑
i,j=1

sisj

∥∥∥∥∥∥ = 4, lim
n→∞

∥∥∥∥∥∥1

n

n∑
i,j=1,i 6=j

sisj

∥∥∥∥∥∥ = 3

Realize that the involved NC pairings are in bijection with NC

partitions and NC partitions without singletons, respectively.



2000 eigenvalues of the matrix

1

12

12∑
ij=1,i 6=j

XiXj,

where the Xi are independent Gaussian random matrices
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Multiplication of Multiple Wigner Integrals

The Ito formula shows up in multiplicaton of two multiple Wigner

integrals

∫
f(t1)dS(t1) ·

∫
g(t2)dS(t2)

=
∫∫

f(t1)g(t2)dS(t1)dS(t2) +
∫
f(t)g(t) dS(t)dS(t)︸ ︷︷ ︸

dt

=
∫∫

f(t1)g(t2)dS(t1)dS(t2) +
∫
f(t)g(t)dt
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∫
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Multiplication of Multiple Wigner Integrals

The Ito formula shows up in multiplicaton of two multiple Wigner

integrals

∫
f(t1)dS(t1) ·

∫
g(t2)dS(t2)

=
∫∫

f(t1)g(t2)dS(t1)dS(t2) +
∫
f(t)g(t) dS(t)dS(t)︸ ︷︷ ︸

dt

=
∫∫

f(t1)g(t2)dS(t1)dS(t2) +
∫
f(t)g(t)dt



Multiplication of Multiple Wigner Integrals

∫∫
f(t1, t2)dS(t1)dS(t2) ·

∫
g(t3)dS(t3)

=
∫∫∫

f(t1, t2)g(t3)dS(t1)dS(t2)dS(t3)

+
∫∫

f(t1, t)g(t)dS(t1) dS(t)dS(t)︸ ︷︷ ︸
dt

+
∫∫

f(t, t2)g(t) dS(t)dS(t2)dS(t)︸ ︷︷ ︸
dtϕ[dS(t2)]=0



Multiplication of Multiple Wigner Integrals

∫∫
f(t1, t2)dS(t1)dS(t2) ·

∫
g(t3)dS(t3)

=
∫∫∫

f(t1, t2)g(t3)dS(t1)dS(t2)dS(t3)

+
∫∫

f(t1, t)g(t)dS(t1) dS(t)dS(t)︸ ︷︷ ︸
dt

+
∫∫

f(t, t2)g(t) dS(t)dS(t2)dS(t)︸ ︷︷ ︸
dtϕ[dS(t2)]=0



Multiplication of Multiple Wigner Integrals

Free Ito Formula [Biane. Speicher 1998]:

dS(t)AdS(t) = ϕ(A)dt for A adapted



Multiplication of Multiple Wigner Integrals

Consider f ∈ L2(Rn+), g ∈ L2(Rm+)

For 0 ≤ p ≤ min(n,m), define

f
p
_ g ∈ L2(Rn+m−2p

+ )

by

f
p
_ g(t1, . . . , tm+n−2p)

=
∫
f(t1, . . . , tn−p, s1, . . . , sp)g(sp, . . . , s1, tn−p+1, . . . , tn+m−2p)ds1 · · · dsp

Then we have

I(f) · I(g) =
min(n,m)∑
p=0

I(f
p
_ g)



Free Chaos Decomposition

One has the canonical isomorphism

L2({S(t) | t ≥ 0}) =̂
∞⊕
n=1

L2(Rn+), f =̂
∞⊕
n=0

fn,

via

f =
∞∑
n=0

I(fn) =
∞∑
n=0

∫
· · ·

∫
fn(t1, . . . , tn)dS(t1) . . . dS(tn).

The set

{I(fn) | fn ∈ L2(Rn+)}

is called n-th chaos.



Note: Polynomials in free semicircular elements

p(s1, . . . , sm)

can be realized as elements from finite chaos

{I(f) | f ∈
⊕

finite

L2(Rn+)}



Problems

We are interested in properties of selfadjoint elements from fixed
(or finite) chaos, like:

• regularity properties of distribution of I(f) from fixed (or
finite) chaos

– atoms or density ????

• distinguish distributions of I(f) and I(g) from different chaos

Looking on elements in fixed chaos gives some quite unexpected
constraints

analogue of classical result of Nualart and Peccati 2005



Problems

We are interested in properties of selfadjoint elements from fixed
(or finite) chaos, like:

• regularity properties of distribution of I(f) from fixed (or
finite) chaos

– atoms or density ????

• distinguish distributions of I(f) and I(g) from different chaos

Looking on elements in fixed chaos gives some quite unexpected
constraints

We have analogue of classical result of Nualart and Peccati 2005.



Theorem (Kemp, Nourdin, Peccati, Speicher 2012): Con-

sider, for fixed n, a sequence f1, f2, · · · ∈ L2(Rn+) with f∗k = fk
and ‖fk‖2 = 1 for all k ∈ N. Then the following statements are

equivalent.

(i) We have limk→∞ϕ[I(fk)4] = 2.

(ii) We have for all p = 1,2, . . . , n− 1 that

lim
k→∞

fk
p
_ fk = 0 in L2(R2n−2p

+ ).

(iii) The selfadjoint variable I(fk) converges in distribution to a

semicircular variable of variance 2.



Corollary: For n ≥ 2 and f ∈ L2(Rn+), the law of I(f) is not

semicircular



Quantitative Estimates ...

Given two self-adjoint random variables X,Y , define the distance

dC2
(X,Y ) := sup{|ϕ[h(X)]− ϕ[h(Y )]| : I2(h) ≤ 1};

where

I2(h) =̂ ‖∂h′‖ and ∂Xn =
n−1∑
k=0

Xk ⊗Xn−1−k

Rigorously: If h is the Fourier transform of a complex measure
ν on R,

h(x) = ν̂(x) =
∫
R
eixξ ν(dξ)

then we define

I2(h) =
∫
R
ξ2 |ν|(dξ)
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... in Terms of the Free Gradient Operator

Define the free Malliavin gradient operator by

∇t
(∫

f(t1, . . . , tn) dSt1 · · · dStn
)

:=
n∑

k=1

∫
f(t1, . . . , tk−1, t, tk+1, . . . , tn)

dSt1 · · · dStk−1 ⊗ dStk+1 · · · dStn

Theorem (Kemp, Nourdin, Peccati, Speicher):

dC2
(F, S) ≤

1

2
ϕ⊗ ϕ

(∣∣∣∣∫ ∇s(N−1F )](∇sF )∗ ds− 1⊗ 1
∣∣∣∣)

But no estimate against Fourth Moment in this case!
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In the classical case one can estimate the corresponding expres-
sion of the above gradient, for F living in some n-th chaos, in
terms of the fourth moment of the considered variable, thus
giving a quantitative estimate for the distance between the con-
sidered variable (from a fixed chaos) and a normal variable in
terms of the difference between their fourth moments. In the
free case such a general estimate does not seem to exist; at the
moment we are only able to do this for elements F from the
second chaos.

Corollary: Let F = I(f) = I(f)∗ (f ∈ L2(R2
+)) be an element

from the second chaos with variance 1, i.e., ‖f‖2 = 1, and let S
be a semiciruclar variable with mean 0 and variance 1. Then we
have

dC2
(F, S) ≤

1

2

√
3

2

√
ϕ(F4)− 2.
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