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Summary

Neural representations of specific stimuli rely on activity pat-

terns indistributedneural assemblies [1–4].According toone
influential view, these assemblies are characterized by syn-

chronized gamma-band activity (GBA) [5–11] that reflects
stimulus-specific representations [12–14]. However, recent

studies have shown that GBA is closely correlated with the
overall amount of cellular activity and may be detrimental

for precise representations of specific stimuli [15, 16]. Until

now, the role of GBA for the formation of dynamically chang-
ing representations has been unknown. Here, we applied

representational similarity analysis (RSA) [17] to intracranial
electroencephalogram (iEEG) data from ten presurgical epi-

lepsypatients to identify stimulus-specificneural representa-
tions. Patients first learned and then retrieved their paths

throughvirtual houses.Dynamic representationswere identi-
fied by the rapidly changing distributions of frequency-spe-

cific global (spatial) activity patterns across the brain. We
found that GBA patterns during successful (but not unsuc-

cessful) retrieval of one sequence weremore similar to activ-
ity duringencodingof that samesequence compared toother

sequences. Thecontributionof individual electrodes to these
global representations was correlated with local similarity in

individual electrodes (i.e., with RSA across time). Moreover,
time-resolved RSA values were negatively correlated with

the magnitude of iEEG gamma power: RSA values were
higher at time points when gamma power was reduced.

Both global and local representations relied on a small pro-
portion of electrodes. These results show that behaviorally

relevant neural representations of specific dynamically
changing stimuli can be tracked by iEEG recordings and

that they are associated with reductions of gamma power.

Results

Patients were presented with video sequences showing the
first person perspective of navigating through a furnished

virtual house (Figures 1A and 1B; Supplemental Information
2.1–2.3). The same dynamic sequences were displayed during
one encoding and three consecutive retrieval sessions. We
quantified the reliability of neural representations by calcu-
lating the similarity between encoding and retrieval of dynamic
episodes using representational similarity analysis (RSA) [17].
We applied both global (spatial) and local (temporal) RSA
to examine global and local representational similarity in intra-
cranial electroencephalogram (iEEG) data. Global representa-
tional similarity was analyzed by calculating correlations
across electrodes, yielding a time-frequency-resolved metric
of global (brain-wide) stimulus-specific representations. Local
representational similarity was quantified via correlations
across time courses, resulting in local representations in indi-
vidual electrodes. For simplicity, in the following RSA refers to
global RSA unless otherwise specified.

Global Representational Similarity Is Higher between
Encoding and Successful Retrieval of Same Video

Sequences Compared with Different Ones
One of our main goals was to assess whether retrieval of a
dynamic episode was associated with the same global neural
activity patterns that had occurred during encoding of that
episode. Two examples of this analysis are shown in Figures
2Ai and 2Aii, taken from two different trials in two different pa-
tients. Each of these figures indicates the distribution of EEG
power at one specific time point and at one specific frequency.
These distributions were then compared (using Spearman’s
rank statistics) between encoding and retrieval of the same
perceptual input. We thus analyzed the similarity of neural
activation patterns across the brain between encoding and
retrieval. We calculated encoding-retrieval correlations across
electrodes in various time-frequency bins within each patient
(see examples in Figure 2B) and then performed cluster-based
surrogate statistics across the group of patients (Supple-
mental Information 2.4; Figure S1). This method effectively
controls the alpha level for multiple comparisons on an
assumption-free basis regarding the sampling distribution un-
der the null hypothesis. We found significant clusters mainly in
the high-frequency range prior to the decision point at a (cor-
rected) alpha level of p < 0.001 (Figures 2C–2Di). More specif-
ically, when we fitted a Gaussian function to the distribution of
significant time bins (right part of Figure 2Di), this function
showed a peak at a frequency of 81 Hz and an SD of 39 Hz.
Therefore, we selected a frequency range between 42 and
120 Hz for the following analyses (mean 6 1 SD). This result
indicates that gamma-band activity (GBA) during retrieval of
a dynamic sequence resembles activity during encoding of
that same sequence more than activity during encoding of a
different sequence.
The amount of similarity was behaviorally relevant, because

the same analysis for incorrectly retrieved trials did not yield
any significant clusters (pcorr = 0.979; i.e., the summary t value
of the largest cluster for incorrect trials was smaller than 97.9%
of the summary t values of surrogate clusters; Figure 2Dii). This
lack of an effect was not due to the smaller number of incorrect
trials (accuracy of three retrieval sessions: 78.6%, 85.3%, and
90.6%; Figure 1C; Supplemental Information 3.1) because*Correspondence: nikolai.axmacher@rub.de
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results for successful trials remained very similar when we
randomly selected as many successful trials as there were
unsuccessful trials (Figure S2A). Furthermore, the summary
t value of the largest cluster of incorrect trials was smaller
than 93.13% of the summary t values of all clusters found
for this reduced subset of correct trials (see Supplemental In-
formation 2.4). We also conducted additional analyses to rule
out possible confounds of temporal proximity, perceptual sim-
ilarity, and re-encoding during retrieval (Figures S2B–S2H;
Supplemental Information 3.2–3.4).

Topographical Distributions of Stimulus-Specific

Representations Are Sparse and Correlated with
Local RSA

We evaluated the contribution of individual electrodes to
global stimulus-specific representations for both correct and
incorrect trials. To this end, we performed a jackknife proce-
dure and calculated changes in RSA values after leaving out
individual electrodes (Supplemental Information 2.5). Interest-
ingly, only 29.2% of all electrodes (57/195; ‘‘informative’’
electrodes) showed positive contributions to RSA values of
correct trials (Figure 3A); in other words, activity in 70.8% of
all electrodes (138/195; ‘‘non-informative’’ electrodes) was
detrimental to neural representations. There were more elec-
trodes that showed positive contributions to RSA values of
incorrect trials (40.5%, i.e., 79/195) compared with correct tri-
als (c2(1) = 12, p < 0.001). Informative electrodes were mainly
located in higher visual areas (Figure S3A; Supplemental Infor-
mation 3.5).

In the analyses presented thus far, we focused on global
representations across the brain, by analyzing the similarity
of activity patterns across the spatial dimension (i.e., across
electrodes). On the other hand, individual brain regions may
support representations of a specific sequence as well. To
investigate this question, we calculated local RSA values
across time separately in each individual electrode (Figures
3B, 3C, and S3B; Supplemental Information 2.5 and 3.6). These
local RSA values were significantly correlated with the contri-
bution of individual electrodes to global representations

(r = 0.357, p < 0.001; Figure 3Di), indicating that local and global
representations are related to each other. In contrast to correct
trials, local RSA values in incorrect trials were independent
of their contribution to global representations (r = 20.04, p =
0.59; Figure 3Dii).

Dynamic Stimulus-Specific Global Representations Are
Associated with Gamma Power Reductions

The results presented thus far show that dynamic sequences
of specific stimuli are represented by dynamically changing
patterns of GBA. Next, we assessed whether these distributed
representations depend on overall GBA magnitude during
retrieval (averaged across electrodes), i.e., whether higher or
lower levels of brain-wide GBA during retrieval (when repre-
sentations should be reactivated) are related to more reliable
representations.We found that the time courses of RSA values
were negatively correlated with the time courses of GBA dur-
ing retrieval (Figure 4A). This relationship was specific for cor-
rect trials (t(9) = 23.82, p = 0.004) and did not occur for incor-
rect trials (t(9) =20.45, p = 0.65). Similar results were obtained
when only the informative electrodes were taken into account
(correct trials: t(9) =23.19, p = 0.01; incorrect trials: t(9) = 1.56,
p = 0.15). A direct comparison showed that the correlation of
RSA values and GBA was more negative for correct than for
incorrect trials (t(9) = 23.17, p = 0.01), which was also true
for the subset of informative electrodes (t(9) = 23.28, p =
0.0096). These results show that more reliable representations
of specific dynamic stimuli are associated with reductions of
global EEG power. Further analyses showed that these find-
ings are specific to the gamma frequency range (Supplemental
Information 3.7).
Next, we analyzed whether the magnitude of GBA in individ-

ual electrodes is related to the reliability of distributed repre-
sentations. Therefore, we correlated, for each electrode and
each trial, GBA during retrieval with the time courses of global
RSA values in the gamma frequency range. A one-sample t test
was then applied to Fisher’s z-transformed correlation values
across trials. This analysis revealed for correct trials that (after
Bonferroni correction) 24.6%of all electrodes (48/195) showed
significantly negative correlations (Figures 4B and S4A;
Supplemental Information 3.8). Only 2 of 195 electrodes, which
were both located in the hippocampus of one single patient,
showed significant positive correlations between gamma po-
wer andRSA values in the gammaband.Moreover, informative
electrodes showed significant negative GBA-RSA correlations
(t(56) = 25.53, p < 0.001), which were significantly more
negative than in non-informative electrodes (t(193) = 22.56,
p = 0.01; Figure S4B). Higher RSA values for informative than
non-informative electrodes were also found when we sepa-
rately averaged temporal RSA values for the two groups of
electrodes in each patient (paired t test across patients:
t(9) = 2.95, p = 0.02; Figure 4C). For incorrect trials, only a single
electrode (located in the hippocampus) showed a significantly
negative correlation, and no electrode showed a positive
correlation.
These results suggest that higher levels of GBA are detri-

mental for the reliability of neural representations. To further
validate this interpretation, we first focused only on informa-
tive electrodes. Temporal RSA values were averaged across
trials with highest gamma power (top one-third) and lowest
gamma power (bottom one-third) within each electrode.
A paired t test across electrodes showed that temporal
RSA values were larger for trials with the lowest gamma
power compared to trials with the highest gamma power

Figure 1. Paradigm and Behavioral Results

(A) Experimental procedure involving encoding, control (distraction), and

retrieval of a video sequence of navigating through a virtual house.

(B) Schematic overview of the path through one house. The black line with

arrows indicates the navigation path inside the house. The question marks

were decision points when arrows were displayed and patients had to

remember the correct path.

(C) Behavioral results: response accuracy and reaction times during encod-

ing and three retrieval sessions. Error bars indicate 1 SEM.
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(t(56) = 22.78, p = 0.007; Figure 4D). By contrast, we did not
find such an effect in the non-informative electrodes (t(137) =
20.84, p = 0.40). We also compared the magnitude of gamma
power during successful compared to unsuccessful retrieval.
Indeed, we found that gamma power was higher when
participants were unable to successfully remember a path
compared to successful retrieval trials (t(194) = 28.37, p <
0.001; Figures 4E and S4C; if only informative electrodes
were included, t(56) = 24.36, p < 0.001). In general, gamma
power was lower during retrieval compared to encoding
(Supplemental Information 3.9; Figure S4D), and the magni-
tude of this reduction was correlated with faster reaction times
(t(9) = 2.74, p = 0.02). By contrast, we did not find any signifi-
cant difference of the gamma power between encoding and
retrieval for incorrect trials.

Discussion

Reinstatement of Dynamic Stimulus-Specific
Representations during Memory Retrieval

A long-standing hypothesis in memory research is that mem-
ory retrieval consists in the reinstatement of encoding-related
activity patterns [18]. Several recent studies have investigated
the similarity between neural activity during encoding and
retrieval of specific events [19]. In fMRI data, pattern classifica-
tion analyses [20, 21] and RSA [22–24] have shown significant
similarity between encoding and retrieval of specific events.
Similar results have been obtained in iEEG studies based on
RSA [13] and on sequences of single units [25]. Our data pre-
sented here are consistent with the general finding that neural
activity during successful retrieval of an event resembles activ-
ity during encoding of that event. While most previous studies
on encoding-retrieval similarity of stimulus-specific represen-
tations have used static stimuli such as words or objects, in
some of them movie sequences were presented [25–27].
Such dynamic stimuli are more ecologically valid than static
ones [28]; however, to our knowledge, very few studies [29–
31] have investigated the temporal dynamics of neural similar-
ity patterns for repeated dynamic stimuli and their functional
role for memory processes.

Relationship between RSA Values and GBA
Overall, we found that time periods during which RSA values
were high were associated with reductions of EEG power in
the gamma frequency range, both when averaged across the
brain and when individually considered in single electrodes.
In the iEEG, GBA shows spatial correlations just in the milli-
meter domain [32, 33] and thus corresponds to activity of rela-
tively circumscribed neural networks. Several studies have
shown that GBA in a narrow frequency band reflects the
recruitment of neural assemblies that are phase synchronized
at this frequency [5, 34–37]. On the other hand, some recent

Figure 2. Spatial Representational Similarity Analysis

(Ai and Aii) Two single-trial examples (Ai and Aii) of topographical patterns of

GBA across the brain during encoding and retrieval of identical positions

within a virtual house. Left: position in virtual houses during encoding and

retrieval (top: position during encoding and retrieval in example 1; bottom:

position during encoding and retrieval in example 2). Middle: each colorful

sphere in the transparent brain indicates an electrode, with colors repre-

senting the magnitude of GBA (42–120 Hz) at the respective time points.

Right: scatter plot of the same results (each dot indicates one electrode)

as indicated in the middle panel.

(B) Examples of averaged RSA values across correct trials for two subjects.

(C) Grand average of RSA values of correct trials.

(Di and Dii) Statistical results of the comparison of RSA values during encod-

ing and retrieval of the same episode compared to encoding and retrieval of

different electrodes, cluster corrected for multiple comparisons. Significant

clusters are circled by black lines. Statistical results are presented for cor-

rect (Di) and incorrect (Dii) trials. Right panel of Di: distribution of significant

RSA time bins across frequencies with fitted Gaussian function (blue line).

Arrow indicates time points when arrow display started. In (B) to (D), time

0 indicates the time point when participants start navigating into a new

room.
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studies showed that the broadband changes in GBA, which
are often observed in iEEG studies (for a recent study, see
[38]), correlate with the magnitude of multi-unit activity [39,
40] and may thus rather reflect the overall amount of cellular
excitation than the degree of neural synchronization. The

Figure 3. Spatial and Temporal Representations

(A) Positive (red) and negative (green) contribution of individual electrodes

to spatial RSA (i.e., RSA across electrodes, as depicted in Figure 2) as

assessed by a jackknife procedure.

(Bi and Bii) Two examples (Bi and Bii) of raw data for calculating local

RSA (i.e., RSA calculated across time for individual electrodes). Data

show single-trial examples for two episodes when two patients were

navigating through the same virtual room during encoding (dark red) and

retrieval (blue) across the entire time interval of 6 s (top panel) and within

a smaller time window of 200 ms (bottom panel)

(C) Local (temporal) representations across the brain. Red indicates positive

temporal RSA values, and green indicates negative temporal RSA values in

individual electrodes.

(Di and Dii) Correlation between the contribution of each electrode to global

(spatial) RSA and local (temporal) RSA values for both correct (Di) and

incorrect trials (Dii). Each dot indicates one electrode.

Figure 4. High Representational Reliability Is Related to Reductions of EEG

Gamma Power of Correct Trials

(A) Three single-trial examples of raw RSA values (red) and gamma power

time series (blue). Unit of gamma power: percentage of signal change

compared to baseline. For presentation purposes, we plotted the data at

a reduced sampling rate of 10 Hz.

(B)Distributionof electrodesshowingsignificantlynegative (blue)andpositive

(red) correlations between RSA values and EEG power in the gamma band.

(C) Averaged temporal RSA value in informative and non-informative

electrodes. Error bars indicate 1 SEM.

(D) Averaged temporal RSA value of trials with highest and lowest third of

gamma power in informative electrodes. Error bars indicate 1 SEM.

(E) Average gamma power during correct and incorrect retrieval trials. Error

bars indicate 1 SEM. Unit of gamma power is percentage of signal change to

baseline. In (C)–(E), a significant difference between two groups is indicated

with *p < 0.05, **p < 0.01, and *** p < 0.001.
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relative contribution of excitation and synchronization to GBA
is currently unclear. Most likely, synchronization-related
(narrow-band) GBA and activity-related (broadband) GBA
coexist [41]. The situation becomes even more complex
because gamma band synchronization, on the one hand,
crucially relies on the activity of inhibitory interneurons [42]
and is thus related to inhibition, but enhances, on the other
hand, the efficiency with which synchronized neurons activate
their target structures (coincidence detection) [43, 44], relating
GBA to excitation.

Our results presented here speak against theories that high
levels of GBA reflect synchronized neural assemblies that
represent specific events [6, 7, 34]. By contrast, they are
consistent with the idea that reliable representations require
an overall reduction of neural activity—potentially due to
somemechanism of active inhibition [45]—or local desynchro-
nization that increases entropy and thus improves information
capacity [46, 47]. Indeed, several previous iEEG studies
showed that at least in the low gamma band (w40-Hz) power
reductions rather than increases are beneficial for memory
processes [15, 16]. Furthermore, repeated presentations of
real-world stimuli are associated with significant reductions
of GBA in visual association cortex [48, 49]. This process
was interpreted as a ‘‘sharpening’’ of representations and
may be an important mechanism during the formation of novel
memory traces [45, 50, 51]. In line with this interpretation, we
found that overall levels of GBAwere higher during unsuccess-
ful than successful retrieval trials, indicating that reductions of
GBA are indeed functionally relevant.

Although we used a spatial navigation paradigm, in our ana-
lyses we compared representations during viewing of the
same sequence compared to during viewing of different se-
quences. Therefore, both conditions were characterized by
the same degree of visual motion and engagement in spatial
navigation. On the other hand, it is possible that representa-
tional similarity between encoding and retrieval is partly due
to perception of the same stimuli. There are previous studies
indicating a role of GBA for representing specific information
in sensory cortex [52], including visual [53] and auditory cortex
[54]. We conducted several control analyses and one control
experiment to dissociate the memory-related RSA effect
from perception-related RSA effects (Supplemental Informa-
tion 3.3 and 3.4). Although we cannot completely rule out
that the similarity of perceptual representations partly explains
our results, these results suggest that representational similar-
ity is indeed related to successful retrieval. Future studies are
needed to address on this question in greater detail.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, Supplemental Results, Supplemental Discussion, four figures, and

two movies and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2015.01.011.
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