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Summary 

Selectively remembering or forgetting newly encountered information is essential for goal-directed 

behavior. It is still an open question, however, whether intentional forgetting is an active process based 

on the inhibition of unwanted memory traces or whether it occurs passively through reduced recruitment 

of selective rehearsal [1,2]. Here we show that intentional control of memory encoding relies on both, 

enhanced active inhibition and decreased selective rehearsal, and that these two processes can be 

separated in time and space. We applied representational similarity analysis (RSA [3]) and time-

frequency analysis to EEG data during an item-method directed forgetting experiment [4]. We identified 

neural signatures of both the intentional suppression and the voluntary upregulation of item-specific 

representations. Successful active forgetting was associated with a downregulation of item-specific 

representations in an early time window, 500ms after the instruction. This process was initiated by an 

increase in oscillatory alpha (8-13 Hz) power, a well-established signature of neural inhibition [5,6], in 

occipital brain areas. During a later time window, 1500ms after the cue, intentional forgetting was 

associated with reduced employment of active rehearsal processes, as reflected by an attenuated 

upregulation of item-specific representations as compared to intentionally encoded items. Our data show 

that active inhibition and selective rehearsal are two separate mechanisms whose consecutive 

employment allows for a voluntary control of memory formation. 

 

Results & Discussion 

Forgetting instructions reduce subsequent memory performance 

We employed the well-established item-method directed forgetting paradigm [1,2,4] in order to 

investigate the mechanisms underlying intentional forgetting (Figure 1A; see STAR Methods). As 

expected, TBF items were remembered worse than TBR items (Pr: hit rate - false alarm rate, MTBF=0.46, 

MTBR=0.56, t(17)=4.19, p=0.0006, Figure 1B). The reduced recognition memory performance suggests 

that the intention to forget or remember indeed leads to the down- or upregulation of individual memory 

traces [1,7]. 
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Figure 1: Paradigm and behavioral results. (A) Each encoding trial contains a picture of an 
everyday object, followed by either a TBR (to be remembered) or a TBF (to be forgotten) cue. (B) 
TBF cues led to reduced recognition memory performance relative to TBR cues in almost all 
participants; lines, performance of single participants. Detailed information on trialnumbers in 
each condition is provided in Figure S1.  

 

 

Item-cue similarity as a measure of active inhibition and active rehearsal 

It is unclear whether reduced memory for TBF items is due to their active inhibition – i.e., a specific 

downregulation of their neural representations (Figure 2A, pink background) – or caused by reduced 

recruitment of rehearsal processes (Figure 2A, green background). On a behavioral level, both accounts 

predict reduced memory for TBF items and are therefore indistinguishable. However, the two accounts 

make dissociable and testable predictions regarding the fate of item-specific representations after a TBF 

and a TBR cue (Figure 2A).  

According to the active inhibition account, representations of forgotten TBF items (TBF-f) should be 

attenuated below the level occurring during passive forgetting, i.e., they should be reduced as compared 

to the representations of forgotten TBR items (TBR-f). This effect should be specific to the contrast of 

active versus passive forgotten items and not occur for later remembered TBF and TBR items (TBF-r 

and TBR-r, respectively). By contrast, the selective rehearsal account proposes that reduced memory for 

TBF items results passively from reduced rehearsal. Accordingly, item representations of subsequently 

remembered TBR items (TBR-r) should be actively upregulated as compared to unintentionally 

remembered TBF items (TBF-r). This rehearsal-related upregulation of item representations should 

drive remembering of the items and should thus not occur for later forgotten TBR and TBF items.  

The two accounts thus make clearly distinguishable predictions for the neural representations of items 

in the different conditions: The active inhibition account predicts that representations of TBF-f items 

are suppressed below the level of TBR-f items (TBF-f < TBR-f), and that this suppression does not 

occur for TBF-r or TBR-r items. The reduced rehearsal account predicts decreased representations of 

TBF-r as compared to TBR-r items (TBF-r < TBR-r), an effect that again should be specific to 

remembered items and not occur for later forgotten items. In order to isolate these two effects, we thus 
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tested the interaction between the two contrasts [8,9], i.e. (TBF-f vs. TBR-f) - (TBF-r vs. TBR-r). In this 

interaction contrast, active inhibition should result in lower RSA values, while active rehearsal results 

in higher values (Figure 2A&B). 

 

Figure 2: Transformation of item-specific representations during directed forgetting. (A) 
Predictions of active inhibition and selective rehearsal accounts on item-cue similarity (ICS) (B) 
Correlations between EEG activity during the item and the cue interval in every trial were 
calculated as single-trial ICS measures for all combinations of item-time x cue-time intervals. Trial-
based ICS values were contrasted depending on the cue (TBF or TBR) and subsequent memory 
(remembered or forgotten). The matrix shown on the right depicts the correlations scheme 
included in the analysis. (C) Interaction effect (TBF/TBR x memory) testing for the differential 
employment of active inhibition (TBF-f vs. TBR-f) or reduced rehearsal (TBF-r vs. TBR-r). Colors 
depict t-values of ICS differences; significant clusters are highlighted by black contours 
(pcorr<0.05). (D,E) Mean ICS values of forgotten (D) and remembered (E) items in the two 
interaction clusters shown in (C). The early negative cluster shows a significant inhibition effect, 
the late positive cluster shows significant reduced rehearsal effect. ICS values were mean 
centered to subject-specific mean ICS values for forgotten or remembered items to depict within-
subject differences. *, p<.05. Predictions for active inhibition and selective rehearsal effects are 
highlighted in pink and green, respectively. Figure S2 depicts several control analyses 
demonstrating that here presented results are not confounded by item unspecific effects. 
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Item-cue similarities provide evidence for early active forgetting and later reduced rehearsal 

As a measure of  item representations after the cue, item-cue similarities (ICS) were estimated in each 

trial by calculating Spearman’s rank correlations between spatiotemporal EEG activity patterns [10–12] 

during item presentation and those following the TBF/TBR cue presentation (Figure 2B; STAR 

Methods). ICS values were calculated for all combinations of item and cue time windows, resulting in 

a time-resolved matrix of item representations during the cue interval. This analysis allows for a time-

resolved assessment of the specific predictions of the active inhibition and the reduced rehearsal 

accounts. 

Cluster-based permutation statistics applied on the ICS matrix revealed an early negative (pcorr=0.004) 

and a late positive cluster (pcorr=0.009, see Figure 2C). The early negative cluster corresponds to EEG 

activity around 600-1000ms after the onset of TBF/TBR cues and 0-300ms after item onset. Follow-up 

analyses of simple contrasts in this early cluster revealed a significant decrease of ICS for TBF-f vs. 

TBR-f items (t(17)=-4.52, p=0.0003, Figure 2D), i.e., item-related patterns were reduced during 

intentional as compared to unintentional forgetting. This effect was not observed when comparing later 

remembered TBF and TBR items (see below), supporting the active inhibition account.  

The second significant cluster occurred later, 1500-2000ms after cue onset and 250-600ms after item 

onset. In this late cluster, ICS was significantly higher for TBR-r than TBF-r items (t(17)=-4.5941, 

p=0.0002, Figure 2E). Follow-up analyses did not reveal active inhibition in this time period (TBF-f vs. 

TBR-f; t(17)=1.287, p=0.22, Figure 2D). This result suggests that remembering of TBR items is driven 

by an upregulation of the corresponding memory traces, and that this process is less recruited for 

incidentally remembered TBF items.  

Interestingly, an “inverted” rehearsal effect was present in the early cluster as well: we observed higher 

ICS for TBF-r items as compared to TBR-r items (t(17)=3.43, p=0.0032, Figure 2E). TBF-r items are 

remembered despite the forget instruction. This effect may reflect a paradoxical rebound due to a failed 

inhibition attempt [13,14]. Since this effect occurred early after the cue, prior to the voluntary rehearsal 

effect, it may reflect an automatic reactivation of a strong item representation acting beyond inhibitory 

reach [13,15,16]. Failed inhibition attempts have been shown to lead to paradoxical rebound and 

enhancement effects [13,14]. Importantly, the post-hoc tests show that both, the active inhibition effect 

and the paradoxical rehearsal effect, reach significance, i.e. the interaction contrast (Figure 2C) is driven 

by both effects.  

The time-resolved ICS analysis revealed inhibition effects that preceded rehearsal effects. Additionally, 

the analysis also revealed differences in the inhibited and rehearsed item information: While inhibition 

specifically affected early item information (0-300ms, Figure 2C), rehearsal occurred only for item 

representations in later processing steps (250-600ms). This dissociation suggests that inhibition 
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specifically targets lower-level perceptual representations, whereas rehearsal acts on higher-level 

semantic representations, in line with previous findings [17,18]. 

To exclude possible confounds in our assessment of ICS, additional control analyses showed that 

condition-specific differences in ICS were indeed driven by item-specific correlations between item and 

cue representations and do not reflect unspecific condition effects (Figure S2).  

 

Increased posterior alpha oscillations precede active inhibition of item-specific representations 

Alpha oscillations (~8-13Hz) have been described as a signature of active inhibition of local information 

processing [6,19–21]. In order to reveal the mechanisms underlying the up- and downregulation of 

memory traces, we thus investigated brain oscillatory dynamics related to active inhibition and selective 

rehearsal. Again, we contrasted activity during TBF-f vs. TBR-r items as an index of active inhibition, 

and during TBF-r vs. TBR-r items reflecting selective rehearsal. 

We conducted a three-dimensional cluster permutation statistic across frequencies, time points, and 

electrodes, contrasting TBF-f with TBR-f trials. This analysis revealed a significant increase of alpha 

power after the TBF cue (~8-13Hz, 100-1000ms, pcorr=0.001, Figure 3A). This effect included a similar 

time window as the active inhibition effect on ICS (600-1000ms; see above) but showed a markedly 

earlier onset (starting at 100ms rather than 600ms post cue onset). We therefore investigated alpha power 

changes separately for the time windows preceding and during the ICS effect, by dividing the power 

effect time window into equal halves (0-500ms and 500-1000ms, respectively). We applied 

beamforming-based source estimation both to the early alpha power effect (preceding the active 

downregulation of item-specific memory traces) and to the late alpha power effect (during this 

downregulation). This analysis revealed a striking pattern: The early alpha power increase was localized 

to two clusters located in the occipital cortex (MNI peak -21/-71/-9, left lingual gyrus, t(17)=4.38, 

pcorr=0.017) and in the right anterior medial temporal lobe (MNI peak 42/-10/-40, t(17)=4.43, right 

inferior temporal gyrus, pcorr=0.034). This early occipital alpha power increase preceded the active 

downregulation of memory traces. It was specific to TBF trials that were forgotten, and did not occur 

for later remembered trials (Figure 3B; interaction analysis, i.e. contrast of active inhibition vs rehearsal, 

see STAR Methods: t(17)=3.05, p=0.007; follow-up pairwise tests: TBF-f vs TBR-f: t(17)=5.18, 

p=0.000076; TBF-r vs TBR-f: t(17)=0.83; p=0.22). In contrast, the later alpha power effect was 

localized to occipital areas extending to posterior temporal, parietal, and posterior midline areas (Figure 

3C, MNI peak -9/-29/40, left middle cingulate cortex; t(17)=4.84, pcorr=0.02). Analysis of this later time 

window showed an unspecific main effect of increased alpha power for TBF vs. TBR items independent 

of later memory (Figure 3C, interaction analysis p=0.01, t(17)=1.74, main effect of TBF vs TBR: 

t(17)=3.46, p=0.003; pairwise tests: TBF-f vs TBR-f: t(17)=4.82, p=0.0002; TBF-r vs TBR-f: 
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t(17)=1.52, p=0.15). Figure S3A illustrates the temporal dynamics and frequency range of the inhibition-

related power changes. 

Taken together, these results show early alpha power increases in occipital areas during the successful 

suppression of perceptual memory traces, reflected in the inhibition of early, perceptual parts of the item 

representation (Figure 2C) [22–24].  

Figure 3: Brain oscillatory correlates of active inhibition and reduced rehearsal. (A) Contrast 
of intentionally forgotten trials (TBF-f) vs. incidentally forgotten trials (TBR-f). Results are corrected 
for multiple comparisons using a cluster-based permutation test across all electrodes, frequencies 
(2-30Hz), and time points (0-2s post cue). Time-frequency plots show mean t-values across all 
significant electrodes. Right: topographical plot highlighting the respective significant electrodes. 
(B) Oscillatory active inhibition effects preceding active inhibition-related ICS changes (time 
window: 0-0.5s post-cue). (C) Oscillatory active inhibition effects during the inhibition-related ICS 
changes (time window: 0.5-1s post-cue). (D) Significant differences of oscillatory power between 
incidentally remembered (TBF-r) and actively rehearsed trials (TBR-r), cluster permutation results 
as in (A). Please note that the selective rehearsal contrast is always plotted as reduced rehearsal 
(TBF-r - TBR-r). (E) Reduced oscillatory rehearsal effect preceding rehearsal-related ICS changes 
(time window: 1-1.5s post-cue). (F) Reduced oscillatory rehearsal effects concurrent with the 
rehearsal-related ICS changes (time window: 1.5-2s post-cue). Source plots show differences 
between TBF-r and TBR-r, thresholded at p<0.01, circles highlight significant clusters (p<0.05). 
Bar plots to the right depict average power in the significant source clusters, black stars indicate 
p<0.05, black circles denote single subject trial averages. Figure S3 additional shows time-
frequency changes in the respective significant source clusters and additional analysis depicting 
the conjunction of inhibition and rehearsal effects. 
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Late alpha/beta power increases index selective rehearsal 

Interestingly, alpha power increases did not only precede and accompany active inhibition, but also 

selective rehearsal. Alpha power increased for TBR-r vs. TBF-r items in a cluster that again preceded 

and concurred with the time period of the ICS selective rehearsal effect (3-dimensional cluster statistics; 

8-13Hz, 1300-1700ms post-cue, pcorr=0.03; Figure 3D). Again, we separately analyzed effects in the two 

time windows (1000-1500ms and 1500-2000ms post cue). In both time windows, rehearsal-related alpha 

power changes were localized to right occipital, parietal and frontal areas, preceding the ICS effect (two 

clusters, cluster 1: MNI peak 12/-70/39, right cuneus, t(17)=-4.55, pcorr=0.018, cluster 2: MNI peak 64/-

9/38, right postcentral gyrus, t(17)=-3.75, pcorr=0.019) and concurrent to the ICS effect (MNI peak 32/-

19/19, right insula, t(17)=-3.95, pcorr=0.044). In the time window preceding the rehearsal ICS effect, a 

rehearsal-specific alpha effect was evident with stronger alpha power increases for TBR-r than TBF-f 

items (interaction: t(17)=2.40, p=0.029, follow-up pairwise tests: TBF-f vs TBR-f: t(17)=-0.55, p=0.59 

TBF-r vs TBR-f: t(17)=-4.41; p=0.0004). Concurrent to the ICS effect, alpha power changes were not 

rehearsal-specific, but related to a general difference between the TBF and TBR condition (interaction: 

t(17)=1.40, pcorr=0.18, TBF vs TBR t(17)=-2.66, pcorr=0.017). Figure S3B further illustrates these effects, 

showing the time-frequency resolved power changes in the respective source clusters. 

The relative increases in alpha power for successfully rehearsed TBR-r items are well in line with 

previously described increases in alpha power during working memory maintenance [25]. Interestingly, 

while the oscillatory power changes related to active inhibition were restricted to the alpha frequency 

range, the selective rehearsal effect extended to higher frequencies in the beta range (Figure S3A&B), 

possibly reflecting maintenance processes [26,27]. 

Taken together, we found robust increases in alpha power related to both active inhibition and selective 

rehearsal that clearly precede the onset of ICS effects. We propose that alpha power increases during 

active inhibition reflect an active downregulation of unwanted memory traces, whereas active 

maintenance during selective rehearsal indicates a focus on internal representations which also requires 

a suppression of bottom-up information flow of possibly distracting information [6,28,29]. This 

interpretation is also in line with the different sources of alpha power changes: While the early alpha 

inhibition effect was localized to occipital regions and thus may indicate a downregulation of visual 

representations, the alpha power increases during selective rehearsal were found in right-lateralized 

parietal regions and possibly index task demands [30]. 

 

Alpha power changes are spatially overlapping to ICS changes 

In order to investigate the spatial extent of ICS effects and to evaluate the overlap of ICS and alpha 

effects, we conducted an ICS searchlight analysis. ICS values were calculated for every source voxel 
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and its 63 nearest neighbors employing the same sliding window spatiotemporal ICS calculation 

approach as on the sensor level (see Figure 2B & Figure 4). The searchlight analysis focused on the two 

significant temporal clusters reported in Figure 2C. This analysis revealed that ICS inhibition effects (0-

300ms item time, 600-100ms cue time) were strongest in occipital areas (Figure 4A), ICS rehearsal 

effects (270-600ms item time, 1600-2000ms cue time) were most pronounced in parietal areas (Figure 

4C).  

To evaluate the spatial overlap of ICS and alpha power effects, we correlated the topographical patterns 

of ICS and alpha effects across all voxels. This analysis revealed significant negative correlations 

between ICS inhibition effects and preceding and concurrent alpha power inhibition effects (Figure 3B). 

This relationship was stronger for alpha power effects preceding ICS inhibition effects than for alpha 

power changes concurrent to ICS effects (Pearson and Filon’s z, z=-5.1460, p <0.001, [31]). Rehearsal 

effects were positively correlated: Areas exhibiting stronger alpha power increases for TBR-r vs TBF-r 

trials showed stronger ICS increases (Figure 4D). This relationship was stronger for concurrent than 

preceding alpha power changes (Pearson and Filon’s z, z=-5.9458, p<0.001). These results suggest that 

alpha power changes up- and downregulate regionally specific item representations. 

Interestingly, specifically alpha power changes preceding ICS inhibition effects correlated strongly to 

ICS effects, suggesting that the spatial overlap of alpha power changes and item representations might 

predict forgetting. Thus, we correlated the spatial overlap of early alpha power increases and ICS effects 

with behavioral forgetting success. The ICS-alpha overlap was evaluated by correlating mean alpha 

power maps (0-500ms post cue) to mean searchlight ICS maps (0-300ms item and 600-1000ms cue time 

window), in every condition and subject. A significant correlation was found only for TBF-f items, 

where a higher overlap of alpha power and ICS was related to stronger forgetting effects across 

participants (r=0.52, p=0.027, Figure S4). This suggests that the spatial precision of alpha power changes 

targeting item representations predicts successful voluntary forgetting.  
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Figure 4: ICS searchlight analysis and overlap with alpha power effects (A) Results of 
searchlight ICS analysis, t-maps of inhibition and (C) rehearsal ICS effects, (threshold p<0.05 
uncorrected). (B &D) Correlation of alpha power effects and ICS searchlight effects. Inhibition (B) 
and rehearsal (D) alpha and ICS searchlight effects were correlated across voxels. Scatterplots 
depict single voxels. To illustrate the spatial overlap, voxels exhibiting overlapping effects, 
highlighted in blue and red, were mapped back onto the brain surface. Highlighted voxels were 
selected using the respective mean t-values for alpha and ICS effects as a cutoff (i.e. decreased 
ICS & alpha power increases for inhibition effects). Figure S4 shows the correlation of forgetting 
success to the spatial overlap of alpha power and ICS inhibition effects. 

 

Active inhibition and selective rehearsal are dissociable processes contributing to directed 

forgetting 

Inhibition and rehearsal effects showed no temporal overlap, neither considering alpha power effects 

nor ICS effects (see Figure S4C&D for a conjunction of effects). Our data provides evidence that 

directed forgetting relies on two temporally separable employed processes, active inhibition and 

selective rehearsal. To confirm this, we investigated whether participants showing stronger active 

inhibition effects also exhibit more pronounced rehearsal effects. Correlating inhibition and rehearsal 

effects across subjects separately for ICS and alpha power effects (extracted from significant source 

clusters) showed no significant correlation for either of these variables (inhibition & rehearsal ICS 

effects: rspearman=-0.23, p=0.34; early alpha power inhibition & rehearsal effects: rspearman=-0.14, p=0.55; 

late alpha power inhibition & rehearsal effects: rspearman=-0.02, p=0.95). This result suggests that active 

inhibition and selective rehearsal are independently employed [32]. 
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Intentional forgetting relies on flexible modulation of memory representations 

The present results show that intentional forgetting of memories relies on two different processes, an 

active downregulation of unwanted memory traces followed by a reduced rehearsal of these traces. 

Interestingly, a prior directed forgetting intracranial EEG study reported similar increases in alpha power 

together with local theta oscillations involved in downregulating hippocampal activity around the time 

window of our current inhibition-related ICS and alpha power effects [8]. Going beyond oscillatory 

correlates, our results demonstrate that item representations are indeed actively inhibited at the time of 

these hippocampal effects. Together, these findings show that motivated forgetting attenuates memory 

traces, leading to their later forgetting.  
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METHODS 

RESOURCE AVAILABILITY 

Lead Contact  

Further information and requests for resources should be directed to and will be fulfilled by the Lead 

contact, Marie-Christin Fellner (marie-christin.fellner@rub.de).  

Materials Availability  

This study did not generate new materials. 

Data and Code Availability Statement Examples  

Data and scripts to carry out all reported analysis are publicly available (DOI 

10.17605/OSF.IO/UPKWE, osf.io/upkwe)  

 

SUBJECT DETAILS 

Participants 

Twenty-three healthy volunteers with normal or corrected-to-normal vision took part in the experiment. 

One dataset was excluded because of the age of the participant (48 years), another 4 datasets were 

excluded after artifact correction (less than 10 trials in one of the conditions), resulting in a final sample 

of 18 datasets (mean age: 23.4, age range: 18-32 years, 8 male). All reported analysis is based on this 

sample of 18 datasets. All subjects were right handed and reported no history of a neurologic or 

psychiatric disease. All participants gave their written informed consent, and the experimental protocol 

was approved by the ethical review board of the Faculty of Psychology at Ruhr University Bochum. 

METHOD DETAILS 

Experimental design  

The experiment consisted of three parts: an encoding phase, a short distractor task (3min of backwards 

counting starting from random 3-digit numbers), and a recognition phase. During the paradigm, 

participants were seated in front of a computer screen. The experiment started with the instruction on 

screen and 4 practice trials. Participants were explicitly instructed that the experiment served to study 

the effect of forgetting on memory. Pictures of everyday objects were presented, followed by fixation 

cross cueing whether the preceding item was to be forgotten (TBF) or to be remembered (TBR). 

Depending on the color of the fixation cross, the participants were instructed to either rehearse and try 

to encode the previously presented item, or to voluntarily forget the item as these items would not be 
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tested later. Participants were instructed not to remember the TBF items in order to improve 

remembering the crucial TBR items. After a brief distractor phase, they performed an item recognition 

task which nevertheless contained all TBF and TBR items that had been presented during encoding, 

randomly intermixed with new pictures. Participants were explicitly asked to remember both, TBF and 

TBR items.  

We used 288 picture stimuli depicting nameable objects from an existing database [33]. During 

encoding, 96 pictures were presented and followed by a TBF or TBR cue, respectively. The sequence 

of TBF and TBR trials was randomized. Each trial started with a fixation cross (500-1000ms jittered), 

then the picture was presented for 500ms, followed by another fixation cross (1500ms) and the 

TBF/TBR cue that remained on screen for 2000ms. During recognition, all old items (TBF&TBR) were 

shown mixed with 96 new items. Participants were instructed to respond to each item on a 1-6 

confidence scale (i.e. 1= very sure old, 6 = very sure new). Participants used index, middle and ring 

fingers on both hands to respond. Each recognition trial started with a fixation cross (500-1000ms 

jittered), then the item was presented for 500ms, followed by another fixation cross (1500ms) and a 

response screen for 2000ms. During all phases, a blank screen was presented during the inter-trial 

interval (1250ms). Picture material, response hand and TBR/TBF cue colors were counterbalanced 

across the participant sample. 

EEG recording and preprocessing 

EEG was recorded from 64 electrodes in an extended 10/20 montage (BrainAmp Standard, EasyCap). 

Recordings were referenced to Fz and later re-referenced offline to average reference. Impedances were 

kept at below 10kW. The signals were amplified between 0.1Hz and 250Hz and recorded with a sampling 

rate of 500Hz. 

All EEG data preprocessing and analyses were carried out using fieldtrip 

(http://www.fieldtriptoolbox.org, [34]) and custom MATLAB scripts. All scripts and preprocessed data 

are available (osf.io/upkwe). Data were epoched in trials from 1 second before an item to 5 seconds after 

item onset during encoding. Data were visually inspected to exclude trials with idiosyncratic artifacts 

(channel jumps, muscle artifacts, noisy channels) from further analysis. Noisy channels were excluded 

(in four datasets, up to three electrodes were excluded). Infomax independent component (IC) analysis 

was applied to correct for residual artifacts (e.g., eye blinks, eye movements, or tonic muscle activity). 

On average 29.39 TBF-f (range: 11-52), 52.61 TBF-r (range: 34-66), 20.11 TBR-f (range: 10-52), and 

63.11 TBR-r trials (range: 30-83) passed artifact corrections. A more in-depth summary of trial numbers 

and the impact of trial sample size on alpha power estimates is shown in Figure S1.  
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Representational similarity analysis of item-cue similarity 

Item-cue similarities were calculated by correlating EEG activity during item presentation (0-500ms) 

with EEG activity post-cue presentation (2000-4000ms relative to item, 0-2000ms post-cue) within each 

trial. To this end, artifact-corrected raw data was downsampled to 100Hz. To remove mean ERP-related 

activity, all trials were normalized using the mean and standard deviation across all trials for each data 

point and channel. We ensured that our normalization procedure did not induce any spurious effects. As 

we applied a z-transformation to the EEG activity at every time point across all trials of all conditions 

in order to remove ERP components prior to calculating correlations, we also ran a control analysis, 

calculating item-cue similarity using data that were not z-transformed across conditions but only within 

conditions (Figure S2A). This approach yielded the same pattern of results. 

EEG data was cut into windows of 200ms in overlapping time windows with 10ms increment, yielding 

a matrix of 21 time points and 64 electrodes every 10ms. These two-dimensional matrices were then 

concatenated into one-dimensional vectors with combined spatial and temporal information (vector 

dimensions: 21 time points x 64 electrodes). Spearman correlations were calculated for every 

combination of time x channel vectors during item representation and time x channel vectors during the 

cue period. This results in item-cue similarity matrices for all combinations of item time bins and cue 

time bins. 

Searchlight ICS analysis 

To investigate spatially resolved ICS effects, ICS was calculated for searchlights centered around every 

virtual source electrode. The size of the searchlight was set to 64 voxels (corresponding to ~4.5cm 

diameter). As source projected EEG still has a low spatial resolution (here 1cm3 virtual electrode 

spacing), only relatively few fully spherical searchlights can be “moved” across the brain, leading to a 

bias to midline voxels. Therefore, searchlights were defined not as spheres but as the 64 voxels nearest 

to the selected voxel including itself. 

Using these searchlights consisting of 64 virtual source electrodes, ICS was calculated in the item-cue 

time windows that were identified in the sensor-level analysis: An early cluster between 0-300ms with 

regard to item onset and 600-100ms after the cue; and a late cluster between 270-600ms after the item 

and 1600-2000ms after the cue (see Figure 2C, selected windows correspond to highlighted clusters). In 

these item x cue time windows, ICS was calculated for every virtual source searchlight using the same 

sliding window approach as for the sensor level data (200ms of data concatenated across all included 

electrodes). The resulting correlation values were averaged across the selected time windows, resulting 

in one average ICS value for each virtual source searchlight, condition, and subject. T-contrasts were 

calculated to explore the effects of interest (inhibition contrast and selective rehearsal contrast). Results 

of these contrasts were mapped onto a brain surface model (Figure 4). 
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EEG oscillatory power analysis 

Data were filtered using wavelets with a length of 5 cycles to obtain oscillatory power between 2 and 

30Hz. Single trial power values were z-transformed using frequency- and channel-specific means and 

standard deviations across all trials. 

Source analysis was performed using a linearly constrained minimal variance (LCMV) beamformer 

[35], calculating a spatial filter based on the whole length of all trials. For all subjects, we used a standard 

boundary element source model with a grid resolution of 10mm based on the Montreal Neurological 

Institute (MNI) brain and standard electrode positions realigned to the MNI MRI. The source time-

course for each grid point was calculated, subjected to a wavelet analysis (same settings as for the raw 

data) and z-transformed as for the electrode-level data. Statistical analysis was restricted to grid voxels 

inside AAL-defined brain regions. For region of interest analyses, data across all grid voxels covering 

the region of interest (significant source) were averaged. Grid voxel data were interpolated to a 2mm 

resolution single-subject MNI brain for plotting and to define the locations of clusters and peaks. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Behavioral Analysis 

To analyze memory performance, we used a signal detection approach to obtain bias free measures of 

memory strength and to classify hits and misses relative to an individually defined neutral response 

criterion (for a similar procedure see [36,37]). As demonstrated previously, individually defining the 

confidence rating boundary between hits and misses enhances signal to noise ratio by taking into account 

individual differences in the use of confidence ratings [36]. 

First, the 1-6 confidence recognition responses of the participants were mapped to binary old/new 

judgements taking into account participants’ individual response biases. Confidence ratings were 

defined as “old” judgements up to the highest rating that was more often used for new items than old 

items during recognition. According to this definition, for two participants only “1” indicated an old 

response, for 4 participants “1-2”, for 9 participants “1-3” and for 3 participants “1-4”. Memory 

performance was then assessed by calculating Pr, i.e. the difference between hit rate (percentage of old 

items remembered as old) and false alarms (percentage of new items incorrectly judged as old). 

Statistical analysis ICS  

For statistical testing of significant ICS differences, a cluster-based permutation approach was used to 

accommodate for potential biases due to different trial numbers in the different conditions and to correct 

for multiple comparisons. To this end, the trial labels were shuffled in each subject 1000 times. This 

random data was then used to construct null distributions of effects under the existing bias in trial 



	 16 

number. In a second, group statistical step, clusters of temporally adjacent significant differences 

(threshold p<0.01) were identified and the sum of t-values in each cluster was calculated in the original 

data and in the data based on the random permutations. If no t-value reached significance in one of the 

permutations, a cluster value of 0 was assigned. Significance of clusters was assessed by calculating the 

rank of the cluster t-values in the distribution of random data (reported as pcorr). A cluster was interpreted 

as significant if an absolutely higher cluster t-value was found in less than 5% of the random 

permutations. 

ICS control analysis 

To ensure that the ICS effects indeed reflect reactivation of item-specific information, we conducted 

several control analyses. A possible confound of the reported ICS interaction effects reported in Figure 

2C is that effects might not only reflect modulations of item-specific representations, but instead general 

condition-specific activity differences such as ERPs, power changes, or other unspecific differences. 

A possible confound is whether the reported effects – even if they rely on single trials rather than trial-

averaged ERPs – are indeed attributable to item-specific representations or whether they reflect 

differences that are independent on item identity. If the reported ICS effects are indeed attributable to 

item-specific memory traces, these effects should be specific to correlations of activity during one item 

window and activity during the matching cue window (i.e., within-item correlation); they should not be 

present when correlating activity during one item window with activity during a non-matching cue 

window (i.e., between-item correlation; see model matrix in Figure S2B).  

Item specificity is often ensured by calculating the difference of within-item correlations and between-

item correlations [38,39]. In Figure S2B we report an ICS analysis based on within-item – between item 

contrasts. We replicated the ICS analysis as shown in Figure 2 by contrasting first within-item ICS to 

between-item ICS (ICSwithin-between) in each condition. The interaction contrast presented in Figure S2B 

hence shows (TBF-fwithin-between - TBR-fwithin-between) vs. (TBF-rwithin-between - TBR-rwithin-between). In order to 

assess statistical significance of the contrasts, again a cluster-based permutation statistics was applied, 

randomly shuffling the assignment of single trials in each subject. This analysis revealed the same results 

as the main analysis: an early negative cluster around 600-1000ms post cue (pcorr=0.001) and a late 

positive cluster around 1600-2000ms (pcorr=0.024). 

As within-item correlations (i.e., matching item and cue) in our data are necessarily within-trial 

correlations, and between-item correlations are across trials, directly calculating this difference may lead 

to biased results, as differences may not only be driven by within-between item effects but also by 

within-between trial effects. We therefore additionally tested whether similar effects as observed within-

items occurred also between-items. We repeated the same analysis as reported in Figure 2C based on 

between-item correlations and tested for the reported interaction effects. Correlations of non-matching 

item-cue intervals were calculated and again the interaction between TBF/TBR x memory was assessed. 
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This analysis yielded a very different pattern of results than the within-trial item-cue similarity analysis 

(Figure S2C). Most importantly, the results are non-overlapping with the reported interaction effect 

(Figure 2C). Early after the cue, a significant positive effect was evident, an effect that is in stark contrast 

to the reported negative cluster in the within-item ICS analysis. This control analysis provides further 

evidence that the reported effects are indeed attributable to an up- or downregulation of item-specific 

representations. 

Additionally, to ensure that the employed spatiotemporal correlation approach is sensitive to item 

specific effects, we calculated item-specific encoding-recognition similarity (ERS). Analyzing ERS 

allows one to assess item-specificity without the within-item/within-trial confound that biases ICS item-

specific contrasts. ERS was calculated using the same spatiotemporal sliding window approach and trial 

permutation based cluster statistics as used in the main analysis. ERS was calculated for every condition 

separately. To reveal item-specific effects, within-item ERS was contrasted to between-item ERS in 

every condition. This analysis revealed for TBF-r, TBR-r, TBF-f significant item-specific clusters and 

a trend of an item-specific effect in the TBR-f condition (see Figure S2D). 

Furthermore, we tested for a possible influence of ERPs on the reported ICS effects. ERPs were 

previously reported to show condition differences during directed forgetting [40]. ERP rehearsal, 

inhibition and interaction effects were evaluated and are reported in Figure S2E. These differences in 

average condition-specific waveforms reflecting attentional and mnemonic processes could potentially 

influence the ICS measure, which could substantially change the interpretation of our effects: ICS effects 

would then reflect condition-specific differences in neural activity and not up- or downregulations of 

item-specific memory traces. However, additional analyses demonstrated that ERP effects cannot 

explain the item-cue similarity pattern that we had observed: Conducting the same interaction analysis 

as reported in Figure 2C using trial-averaged ERPs rather than single-trial data did not yield any 

significant clusters. For this analysis single subject, condition specific ERPs were calculated and 

subjected to the same item-cue-correlation analysis (Figure S2F). More importantly, the pattern of ERP 

similarity values showed no comparable increases and decreases as observed during the ICS interaction 

analysis. The pattern of (non-significant) effects is actually opposing the ICS effects: numerically 

positive differences were found early after the cue followed by numerically negative differences late 

post-cue (Figure S2F). This control analysis shows that the ICS effects cannot be attributed to univariate 

condition differences. 

Finally, we investigated whether our ICS results were directly driven by the reported differences in 

alpha/beta power between conditions (see main Figure 3). We thus repeated our main analysis of ICS 

after applying a bandstop-filter between 7-20Hz. This analysis yielded very similar results as our main 

analysis (Figure S2G), with the exception of lacking aliasing effects that are caused by (usually 

prominent) alpha oscillations. 
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Statistical analysis oscillatory power 

For statistical analysis of EEG data, power spectra for each subject were collapsed and averaged across 

all trials for each “cell” of the design matrix (TBF-f, TBF-r, TBR-f, TBR-r). All of the following EEG 

analyses were based on these first-level averages (4 cells, 18 subjects). This prior averaging of data 

within each cell for each subject controls for possible biases of trial numbers in the analysis of main 

effects (e.g., there were more TBF-f trials than TBR-f trials, and thus, if all TBR trials irrespective of 

memory would be pooled, condition effects would be confounded by subsequent memory differences, 

see Figure S1A). This analysis is essentially equivalent to a 2x2 repeated measurements ANOVA. 

For statistical analysis, we again used nonparametric cluster-based permutation tests as implemented in 

fieldtrip [41]. The cluster-based permutation test consisted of the following two steps: first, clusters of 

coherent t-values exceeding a certain threshold (here, p<0.01) along selected dimensions (time, 

frequency, electrodes/grid voxels) were detected in the data. Second, summed t-values of these clusters 

were compared to a null distribution of t-sums of random clusters obtained by permuting condition labels 

across subjects. This procedure effectively controls for type I errors due to multiple testing. The clusters 

of t-values subjected to permutation testing can be built across different dimensions: clustering can be 

performed on non-averaged data across all dimensions (electrode, frequency, time) or in a specific 

dimension when averaging over certain dimensions (i.e., averaging in the time-frequency window and 

then clustering across the electrode dimension). Clustering was employed along different dimensions 

depending on the data. In order to investigate power changes on the source level, power values of 

significant source clusters were extracted, averaged across significant voxels, and subjected to further 

statistical analysis. In order to correlate the active inhibition and selective rehearsal power effects across 

subjects, average power in the reported peak voxel of the effect was extracted. 

To further ensure that reported significant alpha power changes are not confounded by possible biases 

cause by differences trial numbers between conditions, reported alpha power results were follow up by 

an additional trial based cluster permutation statistic clustering across sensors, similar to the reported 

ICS statistical analysis. Here, instead of shuffling the condition label of mean power values in each 

subject, trial labels in each subject were shuffled to construct a null distribution of the selected contrast 

(see Figure S1C). Importantly, this analysis yielded very similar results to the condition shuffling 

approach, demonstrating that reported results are not caused by trial number biases. 
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Supplemental Material

 

Figure S1: Analysis of trial number effects related to Figure 1. (A) Left: Relative trial numbers 
rejected during preprocessing in each condition. Right: Absolute trial numbers after artifact 
correction (subject inclusion criteria of 10 trials minimum highlighted by horizontal line). (B) 
Influence of trial numbers on the estimation of mean alpha power. A simulation was run randomly 
drawing samples of 5 to 25 trials, thereby generating 20 random samples for each trial number 
size and calculating the mean alpha power (8-13Hz, 0-2s past cue, POz) in each sample. (BI) 
Simulated means in one exemplary subject. Dots depict means, the blue line shows mean across 
all existing trials (n=174) in one subject. The variance between the black dots is clearly decreasing 
with more trials. (BII) Variances of simulated means for all subjects and trial numbers. (BIII) P-values 
of Levene’s test of variance homogeneity, comparing the variance across multiple random 
drawings in differently sized subsamples to a sample of 25 trials (uncorrected for multiple 
comparisons). Red dots highlight the number of trials in the condition with the smallest number of 
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trials in each subject. (No dots for subjects with more than 25 trials). This analysis clearly confirms 
that for the vast majority of subjects the available trial sample size is above the number needed 
for stable mean estimation. (BIV) Mean variance for each trial sample size and relative number of 
subjects showing no significant differences in variances for the different sample sizes. This plot 
indicates that variances are relatively stable in samples of 10 or more trials. (C) To further establish 
that alpha power results were not biased by differences in trial numbers between conditions, a 
trial-based permutation statistic of alpha power effects was carried out. Trial-based permutation 
statistics (as used for the ICS analysis, Figure 2) controls for potential trial biases by assessing 
statistical significance using null distributions based on the original data distribution. Trial labels 
of the tested contrasts were randomly shuffled in each subject. Using this trial-based permutation 
approach, we tested for (CI) alpha power inhibition effects preceding (0-500ms) and concurrent 
(500-1000ms) to ICS inhibition effects, and (CII) alpha power rehearsal effects preceding (1000-
1500ms) and concurrent (1500-2000ms) to ICS rehearsal effects. This analysis largely replicated 
the results of the main analysis of inhibition and rehearsal effects on the sensor level (Figure 3), 
showing that alpha power effects remain stable also when controlling for trial number biases. 
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Figure S2: Item-cue similarity control analysis related to Figure 2. To ensure that item-cue 
similarity differences presented in Figure 2C were not confounded by item-unspecific differences 
between conditions, several control analyses were carried out. (A) Control analysis for 
normalization procedure. To ensure that different normalization steps prior to correlations did not 
influence our results, the same analysis as presented in Figure 2 D&E was reproduced employing 
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condition-specific normalization prior to the item-cue similarity analysis. (B) Interaction effect 
based on within-item vs between-item ICS analyses. (BI) A cluster permutation statistic shuffling 
single trial labels revealed very similar results to the with-item results (compared to Figure 2 in the 
main manuscript, negative cluster pcorr=0.024, positive cluster pcorr=0.001). Contours highlight 
significant clusters. (BII) Mean ICS values based on within-item vs between-item ICS separately 
for forgotten and remembered trials in the two interaction clusters highlighted above. Note that 
the pattern of results remains unchanged. (C) Interaction effect based on between-item ICS 
analyses. (CI) The same analysis as in Figure 2C was also conducted between item and cue 
periods of different trials, revealing a very different result than within item analyses. (CII) Mean ICS 
values of between-item ICS in the interaction clusters highlighted in BI, note that no significant 
inhibition or rehearsal effects were present in the between-item ICS, demonstrating that reported 
ICS effects are specific to the within-item contrasts. (D) Item-specific encoding-recognition 
similarities in each condition. Outlined contours show significant clusters of item-specific 
information obtained by a cluster permutation statistic. Item-specificity was tested by permuting 
item labels in each subject and for each condition, providing a null distribution of no item-specific 
effects (TBF-r pcorr=0.001, TBR-r pcorr=0.001, TBF-f pcorr=0.01, TBR-f pcorr=0.072). (E) Condition-
specific ERP effects. (EI) Topographical plots of inhibition, rehearsal and interaction effects in 
500ms windows post TBR/TBF cues (cluster permutation tests across electrodes). Highlighted 
black dots show clusters of significant electrodes (pcorr<0.05). (EII) Condition-specific ERPs. Upper 
row: ERPs in the left frontal cluster of electrodes (highlighted in the topographical plot) depicting 
rehearsal effects from 0-500ms after the cue. Lower row: ERPs in the negative posterior cluster. 
(F) The ICS interaction effect as in Figure 2C calculated not based on single trials, but correlating 
condition-specific ERPs during item presentation with ERPs during cue presentation in each 
condition and every subject. This analysis revealed no significant results and an overall different 
pattern compared to the original analysis demonstrating that ERP effects cannot explain the 
reported ICS effects. (G) The exact same interaction analysis as in Figure 2C was repeated based 
on data with an alpha 8-20Hz band stop filter, to ensure that alpha power changes were not driving 
the effects. We obtained similar results as in the original analysis, contours highlight significant 
clusters (pcorr<0.05). 
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Figure S3: Time-frequency plots in significant source clusters and conjunction analyses 

related to Figure 3. (A) Time-frequency changes in the respective significant source clusters for 
the inhibition contrast (Figure 3 B&C). (B) Time-frequency changes in the respective significant 
source clusters for the rehearsal contrast (Figure 3 E&F), black contours highlight significant 
clusters (p<0.05). Please note that this analysis does not provide independent evidence since the 
clusters were defined by showing significant inhibition and rehearsal effects respectively. (C,D) 
Conjunction of inhibition and rehearsal effects. (C) Minimum t-statistic conjunction [S1,S2] of 
inhibition (TBF-f vs TBR-f) and rehearsal (TBF-r vs TBR-r) contrasts. For time points in which 
contrasts were in opposing directions, the conjunction was set to zero. An uncorrected threshold 
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of p<0.05 was not exceeded at any time point. Contours show the positions of significant 
interaction clusters reported in Fig. 2C. (D) Alpha power changes (8-13Hz) in every electrode 
(sorted from posterior to anterior position). Plots depict t-values for the inhibition contrast (left), the 
rehearsal contrast (middle) and the minimum t-value conjunction (right). 
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Figure S4: Overlap of alpha power changes and ICS predicts forgetting success related to 

Figure 4. To follow up on the finding that specifically alpha power increases preceding ICS 
inhibition effects are overlapping with ICS changes, we assessed whether the spatial overlap of 
early alpha power increases and ICS effects predicts forgetting success. The ICS-alpha overlap 
was evaluated by correlating mean alpha power source maps (0-500ms post cue, preceding ICS 
inhibition effects) to mean searchlight ICS maps (0-300ms item-time and 600-1000ms cue-time 
window), in every condition and subject. In order to investigate whether this alpha-ICS overlap 
predicts later forgetting, these alpha-ICS correlations were correlated with individual forgetting 
success (relative changes in TBR-TBF hit rate). A significant correlation was found only in the TBF-
f condition, suggesting that voluntary forgetting depends on the spatial precision of early alpha 
power increases targeting item-specific representations. 
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